On the representation of integers as sums of distinct terms from a fixed set
Norbert Hegyvári
Acta Arithmetica, Tome 92 (2000), p. 99-104 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207381
@article{bwmeta1.element.bwnjournal-article-aav92i2p99bwm,
     author = {Norbert Hegyv\'ari},
     title = {On the representation of integers as sums of distinct terms from a fixed set},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {99-104},
     zbl = {0949.11015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p99bwm}
}
Norbert Hegyvári. On the representation of integers as sums of distinct terms from a fixed set. Acta Arithmetica, Tome 92 (2000) pp. 99-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p99bwm/

[000] [1] J. W. S. Cassels, On the representation of integers as sums of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged) 21 (1960), 111-124. | Zbl 0217.32102

[001] [2] P. Erdős, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith. 7 (1962), 345-354. | Zbl 0106.03805

[002] [3] P. Erdős and R. L. Graham, On a linear diophantine problem of Frobenius, ibid. 21 (1972), 399-408. | Zbl 0246.10010

[003] [4] J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643-655. | Zbl 0151.03703

[004] [5] G. Freiman, New analytical results in subset-sum problem, Discrete Math. 114 (1993), 205-218. | Zbl 0849.11015

[005] [6] R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964), 275-286.

[006] [7] A. Sárközy, Finite addition theorems II, J. Number Theory 48 (1994), 197-218. | Zbl 0808.11011