@article{bwmeta1.element.bwnjournal-article-aav92i2p99bwm, author = {Norbert Hegyv\'ari}, title = {On the representation of integers as sums of distinct terms from a fixed set}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {99-104}, zbl = {0949.11015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p99bwm} }
Norbert Hegyvári. On the representation of integers as sums of distinct terms from a fixed set. Acta Arithmetica, Tome 92 (2000) pp. 99-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p99bwm/
[000] [1] J. W. S. Cassels, On the representation of integers as sums of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged) 21 (1960), 111-124. | Zbl 0217.32102
[001] [2] P. Erdős, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith. 7 (1962), 345-354. | Zbl 0106.03805
[002] [3] P. Erdős and R. L. Graham, On a linear diophantine problem of Frobenius, ibid. 21 (1972), 399-408. | Zbl 0246.10010
[003] [4] J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643-655. | Zbl 0151.03703
[004] [5] G. Freiman, New analytical results in subset-sum problem, Discrete Math. 114 (1993), 205-218. | Zbl 0849.11015
[005] [6] R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964), 275-286.
[006] [7] A. Sárközy, Finite addition theorems II, J. Number Theory 48 (1994), 197-218. | Zbl 0808.11011