Collatz cycles with few descents
T. Brox
Acta Arithmetica, Tome 92 (2000), p. 181-188 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207379
@article{bwmeta1.element.bwnjournal-article-aav92i2p181bwm,
     author = {T. Brox},
     title = {Collatz cycles with few descents},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {181-188},
     zbl = {0954.11007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p181bwm}
}
T. Brox. Collatz cycles with few descents. Acta Arithmetica, Tome 92 (2000) pp. 181-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p181bwm/

[000] [1] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, 1975. | Zbl 0297.10013

[001] [2] E. G. Belaga and M. Mignotte, Embedding the 3x + 1 conjecture in a 3x + d context, Experiment. Math. 7 (1998), 145-152. | Zbl 0918.11008

[002] [3] L. Halbeisen and N. Hungerbühler, Optimal bounds for the length of rational Collatz cycles, Acta Arith. 78 (1997), 227-239. | Zbl 0863.11015

[003] [4] J. C. Lagarias, The 3x + 1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. | Zbl 0566.10007

[004] [5] J. C. Lagarias, The set of rational cycles for the 3x + 1 problem, Acta Arith. 56 (1990), 33-53. | Zbl 0773.11017

[005] [6] R. P. Steiner, A theorem on the Syracuse Problem, in: Proc. 7th Manitoba Conf. on Numerical Mathematics, 1977, Winnipeg, 1978, 553-559.

[006] [7] G. J. Wirsching, The Dynamical System Generated by the 3n + 1 Function, Lecture Notes in Math. 1681, Springer, Berlin, 1998. | Zbl 0892.11002