@article{bwmeta1.element.bwnjournal-article-aav92i2p181bwm, author = {T. Brox}, title = {Collatz cycles with few descents}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {181-188}, zbl = {0954.11007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p181bwm} }
T. Brox. Collatz cycles with few descents. Acta Arithmetica, Tome 92 (2000) pp. 181-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p181bwm/
[000] [1] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, 1975. | Zbl 0297.10013
[001] [2] E. G. Belaga and M. Mignotte, Embedding the 3x + 1 conjecture in a 3x + d context, Experiment. Math. 7 (1998), 145-152. | Zbl 0918.11008
[002] [3] L. Halbeisen and N. Hungerbühler, Optimal bounds for the length of rational Collatz cycles, Acta Arith. 78 (1997), 227-239. | Zbl 0863.11015
[003] [4] J. C. Lagarias, The 3x + 1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. | Zbl 0566.10007
[004] [5] J. C. Lagarias, The set of rational cycles for the 3x + 1 problem, Acta Arith. 56 (1990), 33-53. | Zbl 0773.11017
[005] [6] R. P. Steiner, A theorem on the Syracuse Problem, in: Proc. 7th Manitoba Conf. on Numerical Mathematics, 1977, Winnipeg, 1978, 553-559.
[006] [7] G. J. Wirsching, The Dynamical System Generated by the 3n + 1 Function, Lecture Notes in Math. 1681, Springer, Berlin, 1998. | Zbl 0892.11002