On the factors Φ(jδ/m) of the period polynomial for finite fields
S. Gurak
Acta Arithmetica, Tome 92 (2000), p. 153-167 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207377
@article{bwmeta1.element.bwnjournal-article-aav92i2p153bwm,
     author = {S. Gurak},
     title = {On the factors $$\Phi$^{(j$\delta$/m)}$ of the period polynomial for finite fields},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {153-167},
     zbl = {0952.11030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p153bwm}
}
S. Gurak. On the factors $Φ^{(jδ/m)}$ of the period polynomial for finite fields. Acta Arithmetica, Tome 92 (2000) pp. 153-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i2p153bwm/

[000] [1] Z. Borevich and I. Shafarevich, Number Theory, Academic Press, New York, 1966.

[001] [2] S. Gupta and D. Zagier, On the coefficients of the minimal polynomial of Gaussian periods, Math. Comp. 60 (1993), 385-398. | Zbl 0819.11062

[002] [3] S. Gurak, Minimal polynomials for Gauss circulants and cyclotomic units, Pacific J. Math. 102 (1982), 347-353. | Zbl 0501.12003

[003] [4] S. Gurak, Factors of period polynomials for finite fields, II, in: Contemp. Math. 168, Amer. Math. Soc., 1994, 127-138. | Zbl 0819.11061

[004] [5] S. Gurak, On the last factor of the period polynomial for finite fields, Acta Arith. 71 (1995), 391-400. | Zbl 0819.11063

[005] [6] S. Gurak, On the minimal polynomials for certain Gauss periods over finite fields, in: Finite Fields and their Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, 1996, 85-96. | Zbl 0874.11080

[006] [7] S. Gurak, On the middle factor of the period polynomial for finite fields, CMR Proceedings and Lecture Notes 19 (1999), 121-131. | Zbl 0969.11039

[007] [8] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith. 39 (1981), 251-264. | Zbl 0393.12028