1. Introduction. Let Q be a positive definite n × n matrix with integral entries and even diagonal entries. It is well known that the theta function , Im z > 0, is a modular form of weight n/2 on , where N is the level of Q, i.e. is integral and has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly. Stark [8] gives a different proof by converting into a symplectic theta function and then using the transformation formula for the symplectic theta function. In [4], we apply Stark’s method and use theta functions of indefinite quadratic forms to construct modular forms over totally real number fields. In this paper, we define theta functions attached to quadratic forms over imaginary quadratic fields. We show that these theta functions are modular forms of weight n/2 on some groups by regarding them as symplectic theta functions and then applying well known results for symplectic theta functions. In particular, the main result of [8] allows us to compute the theta multiplier for our theta functions in a very elegant way.
@article{bwmeta1.element.bwnjournal-article-aav92i1p1bwm, author = {Olav K. Richter}, title = {Theta functions of quadratic forms over imaginary quadratic fields}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {1-9}, zbl = {0956.11013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i1p1bwm} }
Olav K. Richter. Theta functions of quadratic forms over imaginary quadratic fields. Acta Arithmetica, Tome 92 (2000) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i1p1bwm/
[00000] [1] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press, New York, 1966.
[00001] [2] E. Hecke, Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Nachr. Ges. Wiss. Göttingen Math.-phys. Kl. 1917, 299-318. | Zbl 46.0256.03
[00002] [3] W. Pfetzer, Die Wirkung der Modulsubstitutionen auf mehrfache Thetareihen zu quadratischen Formen ungerader Variablenzahl, Arch. Math. (Basel) 4 (1953), 448-454. | Zbl 0052.08703
[00003] [4] O. Richter, Theta functions of indefinite quadratic forms over real number fields, Proc. Amer. Math. Soc., to appear. | Zbl 1036.11016
[00004] [5] B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), 511-523. | Zbl 0020.20201
[00005] [6] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440-481. | Zbl 0266.10022
[00006] [7] C. Siegel, Indefinite quadratische Formen und Funktionentheorie II, Math. Ann. 124 (1952), 364-387. | Zbl 0046.27401
[00007] [8] H. Stark, On the transformation formula for the symplectic theta function and applications, J. Fac. Sci. Univ. Tokyo Sect. 1A 29 (1982), 1-12.