@article{bwmeta1.element.bwnjournal-article-aav91i4p367bwm, author = {Maurice Margenstern and Yuri Matiyasevich}, title = {A binomial representation of the 3x + 1 problem}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {367-378}, zbl = {0968.11011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i4p367bwm} }
Maurice Margenstern; Yuri Matiyasevich. A binomial representation of the 3x + 1 problem. Acta Arithmetica, Tome 89 (1999) pp. 367-378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i4p367bwm/
[000] [1] M. Davis, Yu. Matijasevich and J. Robinson, Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution, in: Proc. Sympos. Pure Math. 28, Amer. Math. Soc., 1976, 323-378.
[001] [2] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential Diophantine equations, Ann. of Math. 74 (1961), 425-436. | Zbl 0111.01003
[002] [3] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, Monatsh. Math. Phys. 38 (1931), 173-198. | Zbl 57.0054.02
[003] [4] L. C. Hsu and P. J.-S. Shiue, On a combinatorial expression concerning Fermat's Last Theorem, Adv. in Appl. Math. 18 (1997), 216-219. | Zbl 0869.11027
[004] [5] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[005] [6] J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23 (available at: http://www.cecm.sfu.ca/organics/papers/lagarias/index.html). | Zbl 0566.10007
[006] [7] J. C. Lagarias, The 3x+1 problem and its generalizations, in: J. Borwein et al. (eds.), Organic Mathematics (Burnaby, 1995), Amer. Math. Soc., Providence, RI, 1995. | Zbl 0566.10007
[007] [8] J. C. Lagarias, 3x+1 Problem Annotated Bibliography, http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/local/anno_bib.ps.
[008] [9] H. B. Mann and D. Shanks, A necessary and sufficient condition for primality, and its source, J. Combin. Theory Ser. A 13 (1972), 131-134. | Zbl 0239.10010
[009] [10] M. Margenstern, Frontier between decidability and undecidability: a survey, Theoret. Comput. Sci. (1999), to appear.
[010] [11] Ju. V. Matijasevič [Yu. V. Matiyasevich], A class of primality criteria formulated in terms of the divisibility of binomial coefficients, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 67 (1977), 167-183, 226-227 (in Russian); English transl.: J. Soviet Math. 16 (1981), 874-885.
[011] [12] Ju. V. Matijasevič [Yu. V. Matiyasevich], Some arithmetical restatements of the Four Color Conjecture, Theoret. Comput. Sci., to appear; a version is available at: http://logic.pdmi.ras.ru/~yumat/Journal/4cc, mirrored at http://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/Journal/4cc.
[012] [13] Ju. V. Matijasevič [Yu. V. Matiyasevich], Hilbert's Tenth Problem, Moscow, Fizmatlit, 1993 (in Russian). English transl.: MIT Press, 1993. French transl.: Masson, 1995. See also at: http://logic.pdmi.ras.ru/~yumat/H10Pbook, mirrored at http://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/H10Pbook.
[013] [14] P. Michel, Busy beaver competition and Collatz-like problems, Arch. Math. Logic 32 (1993), 351-367. | Zbl 0779.03009
[014] [15] M. Petkovšek, H. S. Wilf and D. Zeilberger, A=B, AK Peters, Wellesley, MA, 1996; http://www.cis.upenn.edu/~wilf/AeqB.html.
[015] [16] D. Singmaster, Notes on binomial coefficients. I, II, III, J. London Math. Soc. (2) 8 (1974), 545-548, 549-554, 555-560.
[016] [17] R. Thomas, An update on the Four-Colour Theorem, Notices Amer. Math. Soc. 45 (1998), 848-859 (available at: http://www.ams.org/notices/199807/thomas.ps, http://www.ams.org/notices/199807/thomas.pdf). | Zbl 0908.05040
[017] [18] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and 'q') multisum/integral identities, Invent. Math. 108 (1992), 575-633. | Zbl 0739.05007
[018] [19] G. J. Wirsching, The Dynamical System Generated by the 3n+1 Function, Lecture Notes in Math. 1681, Springer, Berlin, 1998. | Zbl 0892.11002