Chen's theorem in short intervals
Ying Chun Cai ; Ming Gao Lu
Acta Arithmetica, Tome 89 (1999), p. 311-323 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207358
@article{bwmeta1.element.bwnjournal-article-aav91i4p311bwm,
     author = {Ying Chun Cai and Ming Gao Lu},
     title = {Chen's theorem in short intervals},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {311-323},
     zbl = {0944.11031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i4p311bwm}
}
Ying Chun Cai; Ming Gao Lu. Chen's theorem in short intervals. Acta Arithmetica, Tome 89 (1999) pp. 311-323. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i4p311bwm/

[000] [1] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao (Chinese) 17 (1966), 385-386.

[001] [2] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176; II, Sci. Sinica 21 (1978), 477-494 (in Chinese). | Zbl 0319.10056

[002] [3] H. Iwaniec, Rosser's sieve, in: Recent Progress in Analytic Number Theory II, Academic Press, 1981, 203-230.

[003] [4] C. H. Jia, Almost all short intervals containing prime numbers, Acta Arith. 76 (1996), 21-84.

[004] [5] Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Peking, 1981 (in Chinese).

[005] [6] S. Salerno and A. Vitolo, p+2 = P₂ in short intervals, Note Mat. 13 (1993), 309-328.

[006] [7] J. Wu, Théorèmes generalisées de Bombieri-Vinogradov dans les petits intervalles, Quart. J. Math. (Oxford) 44 (1993), 109-128.

[007] [8] J. Wu, Sur l'équation p+2 = P₂ dans les petits intervalles, J. London Math. Soc. (2) 49 (1994), 61-72.