@article{bwmeta1.element.bwnjournal-article-aav91i4p311bwm, author = {Ying Chun Cai and Ming Gao Lu}, title = {Chen's theorem in short intervals}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {311-323}, zbl = {0944.11031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i4p311bwm} }
Ying Chun Cai; Ming Gao Lu. Chen's theorem in short intervals. Acta Arithmetica, Tome 89 (1999) pp. 311-323. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i4p311bwm/
[000] [1] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao (Chinese) 17 (1966), 385-386.
[001] [2] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176; II, Sci. Sinica 21 (1978), 477-494 (in Chinese). | Zbl 0319.10056
[002] [3] H. Iwaniec, Rosser's sieve, in: Recent Progress in Analytic Number Theory II, Academic Press, 1981, 203-230.
[003] [4] C. H. Jia, Almost all short intervals containing prime numbers, Acta Arith. 76 (1996), 21-84.
[004] [5] Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Peking, 1981 (in Chinese).
[005] [6] S. Salerno and A. Vitolo, p+2 = P₂ in short intervals, Note Mat. 13 (1993), 309-328.
[006] [7] J. Wu, Théorèmes generalisées de Bombieri-Vinogradov dans les petits intervalles, Quart. J. Math. (Oxford) 44 (1993), 109-128.
[007] [8] J. Wu, Sur l'équation p+2 = P₂ dans les petits intervalles, J. London Math. Soc. (2) 49 (1994), 61-72.