Integers without large prime factors in short intervals and arithmetic progressions
Glyn Harman
Acta Arithmetica, Tome 89 (1999), p. 279-289 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207356
@article{bwmeta1.element.bwnjournal-article-aav91i3p279bwm,
     author = {Glyn Harman},
     title = {Integers without large prime factors in short intervals and arithmetic progressions},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {279-289},
     zbl = {0949.11044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i3p279bwm}
}
Glyn Harman. Integers without large prime factors in short intervals and arithmetic progressions. Acta Arithmetica, Tome 89 (1999) pp. 279-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i3p279bwm/

[000] [1] R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231. | Zbl 0553.10035

[001] [2] R. C. Baker and G. Harman, Shifted primes without large prime factors, ibid. 83 (1998), 331-361. | Zbl 0994.11033

[002] [3] A. Balog, p+a without large prime factors, Sém. Théorie des Nombres Bordeaux (1983-84), exposé 31.

[003] [4] A. Balog and C. Pomerance, The distribution of smooth numbers in arithmetic progressions, Proc. Amer. Math. Soc. 115 (1992), 33-43. | Zbl 0752.11036

[004] [5] D. A. Burgess, On character sums and L-series, II, Proc. London Math. Soc. (3) 13 (1963), 525-536. | Zbl 0123.04404

[005] [6] D. A. Burgess, The character sum estimate with r=3, J. London Math. Soc. (2) 33 (1986), 219-226. | Zbl 0593.10033

[006] [7] J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. (3) 33 (1976), 565-576. | Zbl 0344.10021

[007] [8] J. B. Friedlander, Shifted primes without large prime factors, in: Number Theory and Applications, 1989, Kluwer, Berlin, 1990, 393-401.

[008] [9] J. B. Friedlander and A. Granville, Smoothing `smooth' numbers, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 339-347. | Zbl 0795.11041

[009] [10] J. B. Friedlander and J. C. Lagarias, On the distribution in short intervals of integers having no large prime factor, J. Number Theory 25 (1987), 249-273. | Zbl 0606.10033

[010] [11] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser. 126, Cambridge Univ. Press, 1991. | Zbl 0713.11001

[011] [12] A. Granville, Integers, without large prime factors, in arithmetic progressions I, Acta Math. 170 (1993), 255-273. | Zbl 0784.11045

[012] [13] A. Granville, Integers, without large prime factors, in arithmetic progressions II, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 349-362. | Zbl 0792.11036

[013] [14] G. Harman, Diophantine approximation with square-free integers, Math. Proc. Cambridge Philos. Soc. 95 (1984), 381-388. | Zbl 0539.10025

[014] [15] G. Harman, Short intervals containing numbers without large prime factors, ibid. 109 (1991), 1-5. | Zbl 0724.11041

[015] [16] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202.

[016] [17] H. W. Lenstra, Jr., J. Pila and C. Pomerance, A hyperelliptic smoothness test I, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 397-408. | Zbl 0808.11073

[017] [18] H.-Q. Liu and J. Wu, Numbers with a large prime factor, Acta Arith. 89 (1999), 163-187.

[018] [19] H. L. Montgomery, Topics in Multiplicative Number Theory, Springer, 1971. | Zbl 0216.03501