A characterization of some additive arithmetical functions, III
Jean-Loup Mauclaire
Acta Arithmetica, Tome 89 (1999), p. 229-232 / Harvested from The Polish Digital Mathematics Library

I. Introduction. In 1946, P. Erdős [2] proved that if a real-valued additive arithmetical function f satisfies the condition: f(n+1) - f(n) → 0, n → ∞, then there exists a constant C such that f(n) = C log n for all n in ℕ*. Later, I. Kátai [3,4] was led to conjecture that it was possible to determine additive arithmetical functions f and g satisfying the condition: there exist a real number l, a, c in ℕ*, and integers b, d such that f(an+b) - g(cn+d) → l, n → ∞. This problem has been treated essentially by analytic methods ([1], [7]). In this article, we shall provide, in an elementary way, a characterization of real-valued additive arithmetical functions f and g satisfying the condition: (H) there exist a and b in ℕ* with (a,b) = 1 and a finite set Ω such that (1) lim_{n→∞} min_{ω∈Ω} |f(an+b) - g(n) - ω| = 0.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207353
@article{bwmeta1.element.bwnjournal-article-aav91i3p229bwm,
     author = {Jean-Loup Mauclaire},
     title = {A characterization of some additive arithmetical functions, III},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {229-232},
     zbl = {0969.11034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i3p229bwm}
}
Jean-Loup Mauclaire. A characterization of some additive arithmetical functions, III. Acta Arithmetica, Tome 89 (1999) pp. 229-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i3p229bwm/

[00000] [1] P. D. T. A. Elliott, The value distribution of differences of additive arithmetic functions, J. Number Theory 32 (1989), 339-370. | Zbl 0707.11058

[00001] [2] P. Erdős, On the distribution function of additive functions, Ann. of Math. 47 (1946), 1-20. | Zbl 0061.07902

[00002] [3] I. Kátai, Some results and problems in the theory of additive functions, Acta Sci. Math. (Szeged) 30 (1969), 305-311. | Zbl 0186.35901

[00003] [4] I. Kátai, On number theoretical functions, in: Number Theory (Colloq., János Bolyai Math. Soc., Debrecen, 1968), North-Holland, Amsterdam, 1970, 133-137.

[00004] [5] J. L. Mauclaire, Contributions à la théorie des fonctions additives, thèse, Publ. Math. Orsay 215, 1977.

[00005] [6] J. L. Mauclaire, Sur la régularité des fonctions additives, Sém. Delange-Pisot-Poitou (15ième année, 1973/1974), fasc. 1, exp. no. 23, 1975.

[00006] [7] N. M. Timofeev, Integral limit theorems for sums of additive functions with shifted arguments, Izv. Math. 59 (1995), 401-426. | Zbl 0894.11034