The Stickelberger element of an imaginary quadratic field
Peter Schmid
Acta Arithmetica, Tome 89 (1999), p. 165-169 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207346
@article{bwmeta1.element.bwnjournal-article-aav91i2p165bwm,
     author = {Peter Schmid},
     title = {The Stickelberger element of an imaginary quadratic field},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {165-169},
     zbl = {0983.11062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i2p165bwm}
}
Peter Schmid. The Stickelberger element of an imaginary quadratic field. Acta Arithmetica, Tome 89 (1999) pp. 165-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i2p165bwm/

[000] [1] D. A. Buell, Class groups of quadratic fields, Math. Comp. 30 (1976), 610-623. | Zbl 0334.12003

[001] [2] H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, in: Number Theory (Noordwijkerhout, 1983), Lecture Notes in Math. 1068, Springer, 1984, 33-62.

[002] [3] R. Kučera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), 139-166. | Zbl 0840.11044

[003] [4] H. L. S. Orde, On Dirichlet's class number formula, J. London Math. Soc. (2) 18 (1978), 409-420. | Zbl 0399.10023

[004] [5] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | Zbl 0465.12001

[005] [6] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, Heidelberg, 1997. | Zbl 0966.11047