@article{bwmeta1.element.bwnjournal-article-aav91i2p165bwm, author = {Peter Schmid}, title = {The Stickelberger element of an imaginary quadratic field}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {165-169}, zbl = {0983.11062}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i2p165bwm} }
Peter Schmid. The Stickelberger element of an imaginary quadratic field. Acta Arithmetica, Tome 89 (1999) pp. 165-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i2p165bwm/
[000] [1] D. A. Buell, Class groups of quadratic fields, Math. Comp. 30 (1976), 610-623. | Zbl 0334.12003
[001] [2] H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, in: Number Theory (Noordwijkerhout, 1983), Lecture Notes in Math. 1068, Springer, 1984, 33-62.
[002] [3] R. Kučera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), 139-166. | Zbl 0840.11044
[003] [4] H. L. S. Orde, On Dirichlet's class number formula, J. London Math. Soc. (2) 18 (1978), 409-420. | Zbl 0399.10023
[004] [5] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | Zbl 0465.12001
[005] [6] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, Heidelberg, 1997. | Zbl 0966.11047