On the quotient sequence of sequences of integers
Rudolf Ahlswede ; Levon H. Khachatrian ; András Sárközy
Acta Arithmetica, Tome 89 (1999), p. 117-132 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207343
@article{bwmeta1.element.bwnjournal-article-aav91i2p117bwm,
     author = {Rudolf Ahlswede and Levon H. Khachatrian and Andr\'as S\'ark\"ozy},
     title = {On the quotient sequence of sequences of integers},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {117-132},
     zbl = {0985.11039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i2p117bwm}
}
Rudolf Ahlswede; Levon H. Khachatrian; András Sárközy. On the quotient sequence of sequences of integers. Acta Arithmetica, Tome 89 (1999) pp. 117-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i2p117bwm/

[000] [1] R. Ahlswede and L. H. Khachatrian, Classical results on primitive and recent results on cross-primitive sequences, in: The Mathematics of Paul Erdős, Vol. I, R. L. Graham and J. Nešetřil (eds.), Algorithms Combin. 13, Springer, 1997, 104-116. | Zbl 0882.11009

[001] [2] F. Behrend, On sequences of numbers not divisible by one another, J. London Math. Soc. 10 (1935), 42-44. | Zbl 61.0132.01

[002] [3] H. Davenport and P. Erdős, On sequences of positive integers, Acta Arith. 2 (1936), 147-151. | Zbl 0015.10001

[003] [4] P. Erdős, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), 126-128. | Zbl 61.0132.02

[004] [5] P. Erdős, A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92-98. | Zbl 0014.01104

[005] [6] P. Erdős, On the distribution of additive functions, Ann. of Math. 97 (1946), 1-20. | Zbl 0061.07902

[006] [7] P. Erdős, A. Sárközy and E. Szemerédi, On the divisibility properties of sequences of integers I, Acta Arith. 11 (1966), 411-418. | Zbl 0146.27102

[007] [8] P. Erdős, A. Sárközy and E. Szemerédi, On divisibility properties of sequences of integers, in: Colloq. Math. Soc. János Bolyai 2, 1970, 35-49. | Zbl 0212.39704

[008] [9] H. Halberstam and K. F. Roth, Sequences, Springer, Berlin, 1983.

[009] [10] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. 48 (1920), 76-92. | Zbl 46.0262.03

[010] [11] J. Kubilius, Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc. Transl. Math. Monographs 11, Providence, 1964. | Zbl 0133.30203

[011] [12] C. Pomerance and A. Sárközy, On homogeneous multiplicative hybrid problems in number theory, Acta Arith. 49 (1988), 291-302.

[012] [13] A. Sárközy, On divisibility properties of sequences of integers, in: The Mathematics of Paul Erdős, Vol. I, R. L. Graham and J. Nešetřil (eds.), Algorithms Combin. 13, Springer, 1997, 241-250. | Zbl 0868.11011

[013] [14] L. G. Sathe, On a problem of Hardy on the distribution of integers having given number of prime factors, J. Indian Math. Soc. 17 (1953), 63-141; and 18 (1954), 27-81. | Zbl 0051.28008

[014] [15] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87.