Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function lxC
A. Rotkiewicz
Acta Arithmetica, Tome 89 (1999), p. 75-83 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207340
@article{bwmeta1.element.bwnjournal-article-aav91i1p75bwm,
     author = {A. Rotkiewicz},
     title = {Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C\_x$
            },
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {75-83},
     zbl = {0951.11001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i1p75bwm}
}
A. Rotkiewicz. Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$
            . Acta Arithmetica, Tome 89 (1999) pp. 75-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i1p75bwm/

[000] [1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 140 (1994), 703-722. | Zbl 0816.11005

[001] [2] N. G. W. H. Beeger, On even numbers m dividing 2m-2, Amer. Math. Monthly 58 (1951), 553-555. | Zbl 0044.26903

[002] [3] M. Cipolla, Sui numeri composti P, che verificano la congruenza di Fermat aP-11(modP), Ann. di Mat. (3) 9 (1904), 139-160.

[003] [4] J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The primary pretenders, Acta Arith. 78 (1997), 307-313. | Zbl 0863.11005

[004] [5] A. Korselt, Problème chinois, L'intermédiare des mathématiciens 6 (1899), 142-143.

[005] [6] C. Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4-9.

[006] [7] C. Pomerance, I. L. Selfridge and S. S. Wagstaff, The pseudoprimes to 25·10⁹, Math. Comp. 35 (1980), 1003-1026. | Zbl 0444.10007

[007] [8] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996. | Zbl 0856.11001

[008] [9] A. Rotkiewicz, Pseudoprime Numbers and Their Generalizations, Student Association of Faculty of Sciences, Univ. of Novi Sad, 1972. | Zbl 0324.10007

[009] [10] A. Schinzel, Sur les nombres composés n qui divisent an-a, Rend. Circ. Mat. Palermo (2) 7 (1958), 37-41. | Zbl 0083.26103

[010] [11] W. Sierpiński, A remark on composite numbers m which are factors of am-a, Wiadom. Mat. 4 (1961), 183-184 (in Polish; MR 23A87). | Zbl 0104.26802

[011] [12] W. Sierpiński, Elementary Theory of Numbers, Monografie Mat. 42, PWN, Warszawa, 1964 (2nd ed., North-Holland, Amsterdam, 1987). | Zbl 0122.04402

[012] [13] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.