Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions
Ulrike M. A. Vorhauer
Acta Arithmetica, Tome 89 (1999), p. 57-73 / Harvested from The Polish Digital Mathematics Library

1. Summary. In Part II we study arithmetic functions whose Dirichlet series satisfy a rather general type of functional equation. For the logarithmic Riesz mean of these functions we give a representation involving finite trigonometric sums. An essential tool here is the saddle point method. Estimation of the exponential sums in the special case of the circle problem will be the topic of Part III.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207339
@article{bwmeta1.element.bwnjournal-article-aav91i1p57bwm,
     author = {Ulrike M. A. Vorhauer},
     title = {Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {57-73},
     zbl = {0940.11032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav91i1p57bwm}
}
Ulrike M. A. Vorhauer. Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions. Acta Arithmetica, Tome 89 (1999) pp. 57-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav91i1p57bwm/

[000] [1] T. M. Apostol, Identities involving the coefficients of certain Dirichlet series, Duke Math. J. 18 (1951), 517-525.

[001] [2] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series, I, II, Trans. Amer. Math. Soc. 137 (1969), 345-359, 361-374.

[002] [3] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series, III, Trans. Amer. Math. Soc. 146 (1969), 323-348. | Zbl 0191.33003

[003] [4] S. Bochner, Some properties of modular relations, Ann. of Math. 53 (1951), 323-363. | Zbl 0042.32101

[004] [5] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith. 6 (1961), 487-505. | Zbl 0101.03703

[005] [6] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23. | Zbl 0107.03702

[006] [7] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. 76 (1962), 93-136. | Zbl 0211.37901

[007] [8] K. Chandrasekharan and R. Narasimhan, On the mean value of the error term for a class of arithmetical functions, Acta Math. 112 (1964), 41-67. | Zbl 0128.26302

[008] [9] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985. | Zbl 0556.10026

[009] [10] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 1912, 687-771. | Zbl 43.0266.01

[010] [11] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen (Zweite Abhandlung), Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 1915, 209-243. | Zbl 45.0312.02

[011] [12] H.-E. Richert, Beiträge zur Summierbarkeit Dirichletscher Reihen mit Anwendungen auf die Zahlentheorie, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa (1956), 77-125. | Zbl 0071.28601

[012] [13] E. C. Titchmarsh, The Theory of Functions, 2nd ed., 1939, corrected reprint 1975, Oxford Univ. Press, London. | Zbl 0022.14602

[013] [14] G. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup. (3) 21 (1904), 207-267, 459-533. | Zbl 35.0220.01