@article{bwmeta1.element.bwnjournal-article-aav90i4p371bwm, author = {B. M. M. de Weger and C. E. van de Woestijne}, title = {On the diameter of sets of almost powers}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {371-385}, zbl = {0971.11050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i4p371bwm} }
B. M. M. de Weger; C. E. van de Woestijne. On the diameter of sets of almost powers. Acta Arithmetica, Tome 89 (1999) pp. 371-385. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i4p371bwm/
[000] [1] A. Baker, The theory of linear forms in logarithms, in: A. Baker and D. W. Masser (eds.), Transcendence Theory: Advances and Applications, London, 1977, 1-27.
[001] [2] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[002] [3] M. A. Bennett, Simultaneous rational approximation to binomial functions, Trans. Amer. Math. Soc. 348 (1996), 1717-1738. | Zbl 0873.11042
[003] [4] G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382. | Zbl 0518.10038
[004] [5] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. | Zbl 0421.10019
[005] [6] M. M. Sweet, A theorem in Diophantine approximations, J. Number Theory 5 (1973), 245-251. | Zbl 0267.10044
[006] [7] J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157-166. | Zbl 0524.10037
[007] [8] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. | Zbl 0657.10014
[008] [9] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Centrum Wisk. Inform., Amsterdam, 1989, 19-26.
[009] [10] B. M. M. de Weger and C. E. van de Woestijne, On the power-free parts of consecutive integers, Acta Arith., this issue, 387-395. | Zbl 0971.11051