Continued fractions of Laurent series with partial quotients from a given set
Alan G. B. Lauder
Acta Arithmetica, Tome 89 (1999), p. 251-271 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207327
@article{bwmeta1.element.bwnjournal-article-aav90i3p251bwm,
     author = {Alan G. B. Lauder},
     title = {Continued fractions of Laurent series with partial quotients from a given set},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {251-271},
     zbl = {0933.11037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i3p251bwm}
}
Alan G. B. Lauder. Continued fractions of Laurent series with partial quotients from a given set. Acta Arithmetica, Tome 89 (1999) pp. 251-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i3p251bwm/

[000] [1] L. E. Baum and M. M. Sweet, Continued fractions of algebraic power series in characteristic 2, Ann. of Math. 103 (1976), 593-610. | Zbl 0312.10024

[001] [2] L. E. Baum and M. M. Sweet, Badly approximable power series in characteristic 2, ibid. 105 (1977), 573-580. | Zbl 0352.10017

[002] [3] S. R. Blackburn, Orthogonal sequences of polynomials over arbitrary fields, J. Number Theory 68 (1998), 99-111. | Zbl 0916.12001

[003] [4] A. G. B. Lauder, Polynomials with odd orthogonal multiplicity, Finite Fields Appl. 4 (1998), 453-464. | Zbl 1036.11502

[004] [5] A. G. B. Lauder, Continued fractions and sequences, Ph.D. thesis, University of London, 1999. | Zbl 0933.11037

[005] [6] J. P. Mesirov and M. M. Sweet, Continued fraction expansions of rational expressions with irreducible denominators in characteristic 2, J. Number Theory 28 (1987), 144-148. | Zbl 0626.10029

[006] [7] H. Niederreiter, Rational functions with partial quotients of small degree in their continued fraction expansion, Monatsh. Math. 103 (1987), 269-288. | Zbl 0624.12011

[007] [8] H. Niederreiter, Sequences with almost perfect linear complexity profiles, in: Advances in Cryptology-Eurocrypt '87, D. Chaum and W. L. Price (eds.), Lecture Notes in Comput. Sci. 304, Springer, 1988, 37-51.

[008] [9] A. M. Odlyzko, Asymptotic enumeration methods, in: Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Groetschel and L. Lovász (eds.), Elsevier Science, 1995, 1063-1229.

[009] [10] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250. | Zbl 0753.11005

[010] [11] A. M. Rockett and P. Szüsz, Continued Fractions, World Sci., 1992.

[011] [12] M. Wang, Linear complexity profiles and continued fractions, in: Advances in Cryptology-Eurocrypt '89, J.-J. Quisquater and J. Vandewalle (eds.), Lecture Notes in Comput. Sci. 434, Springer, 1989, 571-585.

[012] [13] H. S. Wilf, Generatingfunctionology, 2nd ed., Academic Press, 1994