Numbers representable by five prime squares with primes in an arithmetic progression
Yonghui Wang
Acta Arithmetica, Tome 89 (1999), p. 217-244 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207325
@article{bwmeta1.element.bwnjournal-article-aav90i3p217bwm,
     author = {Yonghui Wang},
     title = {Numbers representable by five prime squares with primes in an arithmetic progression},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {217-244},
     zbl = {0936.11058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i3p217bwm}
}
Yonghui Wang. Numbers representable by five prime squares with primes in an arithmetic progression. Acta Arithmetica, Tome 89 (1999) pp. 217-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i3p217bwm/

[000] [1] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980. | Zbl 0453.10002

[001] [2] P. X. Gallagher, A large sieve density estimates near σ = 1, Invent. Math. 11 (1970), 329-339. | Zbl 0219.10048

[002] [3] L. K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monographs 13, Amer. Math. Soc., 1965. | Zbl 0192.39304

[003] [4] J. Y. Liu and T. Zhan, The ternary Goldbach problem in arithmetic progressions, Acta Arith. 82 (1997), 197-227. | Zbl 0889.11035

[004] [5] M. C. Liu and K. M. Tsang, Small prime solutions of linear equations, in: Théorie des Nombres, de Gruyter, 1989, 595-624.

[005] [6] M. C. Liu and K. M. Tsang, Small prime solutions of some additive equations, Monatsh. Math. 111 (1991), 147-169. | Zbl 0719.11064

[006] [7] M. C. Liu and T. Zhan, The Goldbach problem with primes in arithmetic progressions, in: Analytic Number Theory, Y. Motohashi (ed.), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, 1997, 227-251. | Zbl 0913.11043

[007] [8] H. L. Montgomery and R. C. Vaughan, The exceptional set of Goldbach's problem, Acta Arith. 27 (1975), 353-370. | Zbl 0301.10043

[008] [9] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Univ. Press, 1981. | Zbl 0455.10034

[009] [10] I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954. | Zbl 0057.28201

[010] [11] Y. H. Wang, Some exponential sums over primes in an arithmetic progression, Shanda Xuebao, to appear (in Chinese).