@article{bwmeta1.element.bwnjournal-article-aav90i2p183bwm, author = {Michael Stoll}, title = {On the height constant for curves of genus two}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {183-201}, zbl = {0932.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i2p183bwm} }
Michael Stoll. On the height constant for curves of genus two. Acta Arithmetica, Tome 89 (1999) pp. 183-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i2p183bwm/
[000] [1] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge Univ. Press, Cambridge, 1996. | Zbl 0857.14018
[001] [2] E. V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003-3015. | Zbl 0864.11033
[002] [3] E. V. Flynn and N. P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), 333-352. | Zbl 0895.11026
[003] [4] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, 1991.
[004] [5] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. | Zbl 0852.11028
[005] [6] Kummer surface formulas, ftp://ftp.liv.ac.uk/~ftp/pub/genus2/. | Zbl 1221.14045
[006] [7] Magma homepage, http://www.maths.usyd.edu.au:8000/u/magma/.