On the height constant for curves of genus two
Michael Stoll
Acta Arithmetica, Tome 89 (1999), p. 183-201 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207322
@article{bwmeta1.element.bwnjournal-article-aav90i2p183bwm,
     author = {Michael Stoll},
     title = {On the height constant for curves of genus two},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {183-201},
     zbl = {0932.11043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i2p183bwm}
}
Michael Stoll. On the height constant for curves of genus two. Acta Arithmetica, Tome 89 (1999) pp. 183-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i2p183bwm/

[000] [1] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge Univ. Press, Cambridge, 1996. | Zbl 0857.14018

[001] [2] E. V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003-3015. | Zbl 0864.11033

[002] [3] E. V. Flynn and N. P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), 333-352. | Zbl 0895.11026

[003] [4] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, 1991.

[004] [5] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. | Zbl 0852.11028

[005] [6] Kummer surface formulas, ftp://ftp.liv.ac.uk/~ftp/pub/genus2/. | Zbl 1221.14045

[006] [7] Magma homepage, http://www.maths.usyd.edu.au:8000/u/magma/.