Rapidly convergent series representations for ζ(2n+1) and their χ-analogue
Masanori Katsurada
Acta Arithmetica, Tome 89 (1999), p. 79-89 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207316
@article{bwmeta1.element.bwnjournal-article-aav90i1p79bwm,
     author = {Masanori Katsurada},
     title = {Rapidly convergent series representations for $\zeta$(2n+1) and their $\chi$-analogue},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {79-89},
     zbl = {0933.11042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i1p79bwm}
}
Masanori Katsurada. Rapidly convergent series representations for ζ(2n+1) and their χ-analogue. Acta Arithmetica, Tome 89 (1999) pp. 79-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i1p79bwm/

[000] [Ay] R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. | Zbl 0293.10001

[001] [Ch] B. R. Choe, An elementary proof of n=11/n²=π2/6, Amer. Math. Monthly 94 (1987), 662-663. | Zbl 0624.40001

[002] [CK] D. Cvijović and J. Klinowski, New rapidly convergent series representations for ζ(2n+1), Proc. Amer. Math. Soc. 125 (1997), 1263-1271. | Zbl 0863.11055

[003] [Ew1] J. A. Ewell, A new series representation for ζ(3), Amer. Math. Monthly 97 (1990), 219-220.

[004] [Ew2] J. A. Ewell, On values of the Riemann zeta function at integral arguments, Canad. Math. Bull. 34 (1991), 60-66.

[005] [Ew3] J. A. Ewell, On the zeta function values ζ(2k+1), k=1,2,..., Rocky Mountain J. Math. 23 (1995), 1003-1012.

[006] [Iv] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.

[007] [Ka1] M. Katsurada, Power series with the Riemann zeta-function in the coefficients, Proc. Japan Acad. Ser. A 72 (1996), 61-63. | Zbl 0860.11050

[008] [Ka2] M. Katsurada, On Mellin-Barnes type of integrals and sums associated with the Riemann zeta-function, Publ. Inst. Math. (Beograd) (N.S.) 62 (76) (1997), 13-25.

[009] [Ka3] M. Katsurada, Power series and asymptotic series associated with the Lerch zeta-function, Proc. Japan Acad. Ser. A 74 (1998), 167-170. | Zbl 0937.11035

[010] [Ra] V. Ramaswami, Notes on Riemann's ζ-function, J. London Math. Soc. 9 (1934), 165-169. | Zbl 0009.34801

[011] [Sr1] H. M. Srivastava, A unified presentation of certain classes of series of the Riemann zeta function, Riv. Mat. Univ. Parma (4) 14 (1988), 1-23. | Zbl 0659.10047

[012] [Sr2] H. M. Srivastava, Certain families of rapidly convergent series representations for ζ(2n+1), Math. Sci. Research Hot-Line 1 (6) (1997), 1-6.

[013] [Sr3] H. M. Srivastava, Some rapidly converging series for ζ(2n+1), Proc. Amer. Math. Soc. 127 (1999), 385-396. | Zbl 0903.11020

[014] [Ti] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986.

[015] [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982. | Zbl 0484.12001

[016] [Wi] J. R. Wilton, A proof of Burnside's formula for Γ(x+1) and certain allied properties of Riemann's ζ-function, Messenger Math. 52 (1922/1923), 90-93.

[017] [YW] Z.-N. Yue and K. S. Williams, Some series representations of ζ(2n+1), Rocky Mountain J. Math. 23 (1993), 1581-1591.