Ramanujan's formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions
Soon-Yi Kang
Acta Arithmetica, Tome 89 (1999), p. 49-68 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207314
@article{bwmeta1.element.bwnjournal-article-aav90i1p49bwm,
     author = {Soon-Yi Kang},
     title = {Ramanujan's formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {49-68},
     zbl = {0933.11003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i1p49bwm}
}
Soon-Yi Kang. Ramanujan's formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions. Acta Arithmetica, Tome 89 (1999) pp. 49-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i1p49bwm/

[000] [1] G. E. Andrews, B. C. Berndt, L. Jacobsen and R. L. Lamphere, The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks, Mem. Amer. Math. Soc. 477 (1992). | Zbl 0758.40001

[001] [2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991. | Zbl 0733.11001

[002] [3] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer, New York, 1994. | Zbl 0785.11001

[003] [4] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer, New York, 1997.

[004] [5] B. C. Berndt and H. H. Chan, Ramanujan's explicit values for the classical theta-function, Mathematika 42 (1995), 278-294. | Zbl 0862.33016

[005] [6] B. C. Berndt and H. H. Chan, Some values for the Rogers-Ramanujan continued fraction, Canad. J. Math. 47 (1995), 897-914. | Zbl 0838.33011

[006] [7] B. C. Berndt, H. H. Chan and L.-C. Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. Reine Angew. Math. 480 (1996), 141-159. | Zbl 0862.33017

[007] [8] H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith. 73 (1995), 343-355. | Zbl 0834.11030

[008] [9] S.-Y. Kang, Some theorems on the Rogers-Ramanujan continued fraction and associated theta functions in Ramanujan's lost notebook, Ramanujan J. 3 (1999), 91-111. | Zbl 0930.11025

[009] [10] K. G. Ramanathan, On Ramanujan's continued fraction, Acta Arith. 43 (1984), 209-226. | Zbl 0535.10007

[010] [11] K. G. Ramanathan, On the Rogers-Ramanujan continued fraction, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 67-77. | Zbl 0565.10009

[011] [12] K. G. Ramanathan, Ramanujan's continued fraction, Indian J. Pure Appl. Math. 16 (1985), 695-724. | Zbl 0573.10001

[012] [13] K. G. Ramanathan, Some applications of Kronecker's limit formula, J. Indian Math. Soc. 52 (1987), 71-89. | Zbl 0682.12002

[013] [14] K. G. Ramanathan, On some theorems stated by Ramanujan, in: Number Theory and Related Topics, Tata Inst. Fund. Res. Stud. Math. 12, Oxford Univ. Press, Bombay, 1989, 151-160. | Zbl 0746.11009

[014] [15] S. Ramanujan, Notebooks (2 volumes), Tata Inst. Fund. Res., Bombay, 1957. | Zbl 0138.24201

[015] [16] S. Ramanujan, Collected Papers, Chelsea, New York, 1962.

[016] [17] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. (Oxford) 45 (1914), 350-372. | Zbl 45.1249.01

[017] [18] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. | Zbl 0639.01023

[018] [19] L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318-343.

[019] [20] G. N. Watson, Theorems stated by Ramanujan ( VII): Theorems on continued fractions, J. London Math. Soc. 4 (1929), 39-48. | Zbl 55.0273.01

[020] [21] G. N. Watson, Theorems stated by Ramanujan (IX): Two continued fractions, J. London Math. Soc. 4 (1929), 231-237. | Zbl 55.0274.01

[021] [22] H. Weber, Lehrbuch der Algebra, dritter Band, Chelsea, New York, 1961.