@article{bwmeta1.element.bwnjournal-article-aav90i1p37bwm, author = {V. Bernik and H. Dickinson and J. Yuan}, title = {Inhomogeneous diophantine approximation on polynomials in $$\mathbb{Q}$\_p$ }, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {37-48}, zbl = {0935.11023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav90i1p37bwm} }
V. Bernik; H. Dickinson; J. Yuan. Inhomogeneous diophantine approximation on polynomials in $ℚ_p$ . Acta Arithmetica, Tome 89 (1999) pp. 37-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav90i1p37bwm/
[000] [1] A. Baker, On a theorem of Sprindžuk, Proc. Roy. Soc. London Ser. A 292 (1966), 92-104. | Zbl 0146.06302
[001] [2] V. Bernik, Application of Hausdorff dimension in the theory of Diophantine approximation, Acta Arith. 42 (1983), 219-253 (in Russian); English transl.: Amer. Math. Soc. Transl. 140 (1988), 15-44. | Zbl 0482.10049
[002] [3] V. Bernik and Yu. Melnichuk, Properties of integral polynomials of p-adic variables with a small norm in the disc, Vestnik L'vov. Politekhn. Inst. 182 (1985), 63-64 (in Russian).
[003] [4] A. O. Gel'fond, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952 (in Russian); English transl.: Dover, New York, 1960.
[004] [5] E. Lutz, Sur les approximations diophantiennes linéaires et p-adiques, Actualités Sci. Indust. 1224, Hermann, 1955.
[005] [6] K. Mahler, Über das Mass der Menge aller s-Zahlen, Math. Ann. 106 (1932), 131-139. | Zbl 0003.24602
[006] [7] A. Sprindžuk, A proof of Mahler's conjecture on the measure of the set of s-numbers, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 379-436 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 51 (1966), 215-272.
[007] [8] A. Sprindžuk, Mahler's Problem in Metric Number Theory, Transl. Math. Monographs 25, Amer. Math. Soc., Providence, 1969.