p-adic logarithmic forms and group varieties II
Kunrui Yu
Acta Arithmetica, Tome 89 (1999), p. 337-378 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207276
@article{bwmeta1.element.bwnjournal-article-aav89i4p337bwm,
     author = {Kunrui Yu},
     title = {p-adic logarithmic forms and group varieties II},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {337-378},
     zbl = {0928.11031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i4p337bwm}
}
Kunrui Yu. p-adic logarithmic forms and group varieties II. Acta Arithmetica, Tome 89 (1999) pp. 337-378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i4p337bwm/

[000] [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026

[001] [2] E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32; Addendum, ibid. 75 (1984), 377. | Zbl 0533.10030

[002] [3] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991. | Zbl 0744.11001

[003] [4] H. Hasse, Number Theory, Springer, Berlin, 1980.

[004] [5] E. M. Matveev, Elimination of the multiple n! from estimates for linear forms in logarithms, Tagungsbericht 11/1996, Diophantine Approximations, 17.03-23.03, 1996, Oberwolfach.

[005] [6] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Izv. Math. 62 (1998), 723-772. | Zbl 0923.11107

[006] [7] C. L. Stewart and K. Yu, On the abc conjecture, Math. Ann. 291 (1991), 225-230. | Zbl 0761.11030

[007] [8] K. Yu, Linear forms in p-adic logarithms, Acta Arith. 53 (1989), 107-186. | Zbl 0699.10050

[008] [9] K. Yu, Linear forms in p-adic logarithms II, III, Compositio Math. 74 (1990), 15-113; 91 (1994), 241-276.

[009] [10] K. Yu, P-adic logarithmic forms and group varieties I, J. Reine Angew. Math. 502 (1998), 29-92. | Zbl 0912.11029