Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1
Mieczysław Kulas
Acta Arithmetica, Tome 89 (1999), p. 301-309 / Harvested from The Polish Digital Mathematics Library

The well-known estimate of the order of the Hurwitz zeta function      ζ(s,α)-α-stc(1-σ)3/2log2/3t 0.    The improvement of the constant c is a consequence of some technical modifications in the method of estimating exponential sums sketched by Heath-Brown ([11], p. 136).

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207273
@article{bwmeta1.element.bwnjournal-article-aav89i4p301bwm,
     author = {Mieczys\l aw Kulas},
     title = {Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line $\sigma$ = 1},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {301-309},
     zbl = {0941.11030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i4p301bwm}
}
Mieczysław Kulas. Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1. Acta Arithmetica, Tome 89 (1999) pp. 301-309. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i4p301bwm/

[00000] [1] J. G. van der Corput et J. F. Koksma, Sur l'ordre de grandeur de la fonction ζ(s) de Riemann dans la bande critique, Ann. Fac. Sci. Univ. Toulouse (3) 22 (1930), 1-39. | Zbl 56.0978.03

[00001] [2] W. J. Ellison et M. Mendès-France, Les nombres premiers, Hermann, Paris, 1975.

[00002] [3] D. R. Heath-Brown, private correspondence, 1992.

[00003] [4] A. Ivić, The Riemann Zeta Function, Wiley, 1985.

[00004] [5] M. Kulas, Some effective estimation in the theory of the Hurwitz-zeta function, Funct. Approx. Comment. Math. 23 (1994), 123-134. | Zbl 0845.11033

[00005] [6] E. I. Panteleeva, On a problem of Dirichlet divisors in number fields, Mat. Zametki 44 (1988), 494-505 (in Russian). | Zbl 0654.10041

[00006] [7] E. I. Panteleeva, On mean values of some arithmetical functions, Mat. Zametki 55 (1994), no. 2, 109-117 (in Russian).

[00007] [8] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.

[00008] [9] H. E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97-101. | Zbl 0161.04802

[00009] [10] W. Staś, Über das Verhalten der Riemannschen ζ-Funktion und einiger verwandter Funktionen, in der Nähe der Geraden σ = 1, Acta Arith. 7 (1962), 217-224. | Zbl 0099.26804

[00010] [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1986. | Zbl 0601.10026

[00011] [12] P. Turán, On some recent results in the analytical theory of numbers, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 339-347.

[00012] [13] O. V. Tyrina, A new estimate for a trigonometric integral of I. M. Vinogradov, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 363-378 (in Russian). | Zbl 0618.10035

[00013] [14] I. M. Vinogradov, General theorems on the upper bound of the modulus of a trigonometric sum, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 109-130 (in Russian). | Zbl 0042.04205