Effective version of Tartakowsky's Theorem
J. S. Hsia ; M. I. Icaza
Acta Arithmetica, Tome 89 (1999), p. 235-253 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207267
@article{bwmeta1.element.bwnjournal-article-aav89i3p235bwm,
     author = {J. S. Hsia and M. I. Icaza},
     title = {Effective version of Tartakowsky's Theorem},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {235-253},
     zbl = {0936.11021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i3p235bwm}
}
J. S. Hsia; M. I. Icaza. Effective version of Tartakowsky's Theorem. Acta Arithmetica, Tome 89 (1999) pp. 235-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i3p235bwm/

[000] [BI] R. Baeza and M. I. Icaza, Decomposition of positive definite integral quadratic forms as sums of positive definite quadratic forms, in: Proc. Sympos. Pure Math. 58, Amer. Math. Soc., 1995, 63-72. | Zbl 0820.11024

[001] [BH] J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), 337-342. | Zbl 0532.10012

[002] [C] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, 1978. | Zbl 0395.10029

[003] [HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations by positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. | Zbl 0374.10013

[004] [Hu] P. Humbert, Réduction de formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50-63. | Zbl 0034.31102

[005] [Ki1] Y. Kitaoka, Siegel Modular Forms and Representation by Quadratic Forms, Tata Lecture Notes, Springer, 1986. | Zbl 0596.10020

[006] [Ki2] Y. Kitaoka, A note on representation of positive definite binary quadratic forms by positive definite quadratic forms in 6 variables, Acta Arith. 54 (1990), 317-322. | Zbl 0705.11018

[007] [Ki3] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Univ. Press, 1993.

[008] [Kn] M. Kneser, Quadratische Formen, Göttingen Lecture Notes, 1973/74.

[009] [N] G. L. Nipp, Quaternary Quadratic Forms - Computer Generated Tables, Springer, 1991. | Zbl 0727.11018

[010] [OM1] O. T. O'Meara, The integral representations of quadratic forms over local rings, Amer. J. Math. 86 (1958), 843-878.

[011] [OM2] O. T. O'Meara, Introduction to Quadratic Forms, Springer, 1973.

[012] [T] W. Tartakowsky, Die Gesamtheit der Zahlen, die durch eine positive quadratische Form F(x,...,xs) (s ≥ 4) darstellbar sind, Izv. Akad. Nauk SSSR 7 (1929), 111-122, 165-195. | Zbl 56.0882.04

[013] [W] G. L. Watson, Quadratic diophantine equations, Philos. Trans. Roy. Soc. London Ser. A 253 (1960), 227-254. | Zbl 0102.28102