Conditions under which K(F) is not generated by Dennis-Stein symbols
Kevin Hutchinson
Acta Arithmetica, Tome 89 (1999), p. 189-199 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207263
@article{bwmeta1.element.bwnjournal-article-aav89i2p189bwm,
     author = {Kevin Hutchinson},
     title = {Conditions under which $K2(\_F)$ is not generated by Dennis-Stein symbols},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {189-199},
     zbl = {0936.11066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i2p189bwm}
}
Kevin Hutchinson. Conditions under which $K₂(_F)$ is not generated by Dennis-Stein symbols. Acta Arithmetica, Tome 89 (1999) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i2p189bwm/

[000] [1] R. K. Dennis and M. R. Stein, The functor K₂: a survey of computations and problems, in: Lecture Notes in Math. 342, Springer, 1973, 243-280.

[001] [2] R. K. Dennis and M. R. Stein, K₂ of radical ideals and semi-local rings revisited, in: Lecture Notes in Math. 342, Springer, 1973, 281-303.

[002] [3] M. Geijsberts, On the generation of the tame kernel by Dennis-Stein symbols, J. Number Theory 50 (1995), 167-179. | Zbl 0822.11080

[003] [4] J. Hurrelbrink, On K₂() and presentations of Sln() in the real quadratic case, J. Reine Angew. Math. 319 (1980), 213-220. | Zbl 0431.20038

[004] [5] J. Hurrelbrink, On the size of certain K-groups, Comm. Algebra 10 (1982), 1873-1889. | Zbl 0502.12010

[005] [6] F. Keune, On the structure of the K₂ of the ring of integers of a number field, K-Theory 2 (1989), 625-645. | Zbl 0705.19007

[006] [7] J. Milnor, Introduction to Algebraic K-Theory, Ann. of Math. Stud. 72, Princeton Univ. Press, 1971. | Zbl 0237.18005

[007] [8] T. Mulders, Generating the tame and wild kernels by Dennis-Stein symbols, K-Theory 5 (1992), 449-470. | Zbl 0761.11040

[008] [9] T. Mulders, On a map from K₀ to K₂, Ph.D. thesis, Katholiecke Universiteit Nijmegen, 1992.

[009] [10] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. | Zbl 0587.12001

[010] [11] A. A. Suslin, Torsion in K₂ of fields, K-Theory 1 (1987), 5-29. | Zbl 0635.12015

[011] [12] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. | Zbl 0359.12011

[012] [13] W. van der Kallen, Stability for K₂ of Dedekind rings of arithmetic type, in: Lecture Notes in Math. 854, Springer, 1981, 217-248.