@article{bwmeta1.element.bwnjournal-article-aav89i2p163bwm, author = {Hong-Quan Liu and Jie Wu}, title = {Numbers with a large prime factor}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {163-187}, zbl = {0937.11038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i2p163bwm} }
Hong-Quan Liu; Jie Wu. Numbers with a large prime factor. Acta Arithmetica, Tome 89 (1999) pp. 163-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i2p163bwm/
[000] [1] R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231. | Zbl 0553.10035
[001] [2] R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
[002] [3] R. C. Baker, G. Harman and J. Rivat, Primes of the form , J. Number Theory 50 (1995), 261-277. | Zbl 0822.11062
[003] [4] A. Balog, Numbers with a large prime factor I, Studia Sci. Math. Hungar. 15 (1980), 139-146; II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 49-67. | Zbl 0445.10033
[004] [5] A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226. | Zbl 0514.10034
[005] [6] E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424.
[006] [7] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333. | Zbl 0687.10028
[007] [8] S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2) 24 (1981), 427-440. | Zbl 0442.10028
[008] [9] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991. | Zbl 0713.11001
[009] [10] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-13. | Zbl 0504.10018
[010] [11] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266. | Zbl 0513.10042
[011] [12] D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 39 (1996), 449-476. | Zbl 0867.11064
[012] [13] D. R. Heath-Brown and C. H. Jia, The largest prime factor of the integers in an interval II, J. Reine Angew. Math. 498 (1998), 35-59. | Zbl 1066.11506
[013] [14] M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Clarendon Press, Oxford, 1996.
[014] [15] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. | Zbl 0444.10038
[015] [16] C. H. Jia, The greatest prime factor of the integers in an interval I, Acta Math. Sinica 29 (1986), 815-825; II, Acta Math. Sinica 32 (1989), 188-199; III, Acta Math. Sinica (N.S.) 9 (1993), 321-336; IV, Acta Math. Sinica 12 (1996), 433-445. | Zbl 0621.10025
[016] [17] M. Jutila, On numbers with a large prime factor IV, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.
[017] [18] H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328. | Zbl 0797.11071
[018] [19] H.-Q. Liu, A special triple exponential sum, Mathematika 42 (1995), 137-143. | Zbl 0829.11042
[019] [20] K. Ramachandra, A note on numbers with a large prime factor I, J. London Math. Soc. (2) 1 (1969), 303-306; II, J. Indian Math. Soc. 34 (1970), 39-48. | Zbl 0179.07301
[020] [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986. | Zbl 0601.10026
[021] [22] J. Wu, Nombres 𝓑-libres dans les petits intervalles, Acta Arith. 65 (1993), 97-116.