Let K be any quadratic field with its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over ℚ, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r+s+t = rst = 1 in . This Diophantine equation gives an elliptic curve defined over ℚ with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of ℚ(i) and ℚ(√2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].
@article{bwmeta1.element.bwnjournal-article-aav89i1p37bwm, author = {K. Chakraborty and Manisha V. Kulkarni}, title = {Solutions of cubic equations in quadratic fields}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {37-43}, zbl = {0935.11019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i1p37bwm} }
K. Chakraborty; Manisha V. Kulkarni. Solutions of cubic equations in quadratic fields. Acta Arithmetica, Tome 89 (1999) pp. 37-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i1p37bwm/
[000] [1] J. W. S. Cassels, On a diophantine equation, Acta Arith. 6 (1960), 47-52. | Zbl 0094.25701
[001] [2] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, Cambridge, 1992. | Zbl 0758.14042
[002] [3] M. Laska, Solving the equation x³ - y² = r in number fields, J. Reine Angew. Math. 333 (1981), 73-85.
[003] [4] R. A. Mollin, C. Small, K. Varadarajan and P. G. Walsh, On unit solutions of the equation xyz = x+y+z in the ring of integers of a quadratic field, Acta Arith. 48 (1987), 341-345. | Zbl 0576.10009
[004] [5] G. Sansone et J. W. S. Cassels, Sur le problème de M. Werner Mnich, Acta Arith. 7 (1962), 187-190.
[005] [6] W. Sierpiński, Remarques sur le travail de M. J. W. S. Cassels 'On a diophantine equation', Acta Arith. 6 (1961), 469-471.
[006] [7] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.
[007] [8] C. Small, On the equation xyz = x+y+z = 1, Amer. Math. Monthly 89 (1982), 736-749. | Zbl 0505.12024