On certain continued fraction expansions of fixed period length
A. J. van der Poorten ; H. C. Williams
Acta Arithmetica, Tome 89 (1999), p. 23-35 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207256
@article{bwmeta1.element.bwnjournal-article-aav89i1p23bwm,
     author = {A. J. van der Poorten and H. C. Williams},
     title = {On certain continued fraction expansions of fixed period length},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {23-35},
     zbl = {0926.11005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i1p23bwm}
}
A. J. van der Poorten; H. C. Williams. On certain continued fraction expansions of fixed period length. Acta Arithmetica, Tome 89 (1999) pp. 23-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i1p23bwm/

[000] [1] R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996.

[001] [2] R. A. Mollin and A. J. van der Poorten, A note on symmetry and ambiguity, Bull. Austral. Math. Soc. 51 (1995), 215-233. | Zbl 0824.11003

[002] [3] R. A. Mollin, A. J. van der Poorten and H. C. Williams, Halfway to a solution of X²-DY² = -3, J. Théor. Nombres Bordeaux 6 (1994), 421-459. | Zbl 0820.11015

[003] [4] A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1961), 393-413. | Zbl 0099.04003

[004] [5] A. Schinzel, On some problems of the arithmetical theory of continued fractions II, Acta Arith. 7 (1962), 287-298. Corrigendum, Acta Arith. 47 (1986), 295. | Zbl 0112.28001

[005] [6] H.-J. Stender, Über die Grundeinheit der reell-quadratischen Zahlkörper ℚ(√A²N²+BN+C), J. Reine Angew. Math. 311/312 (1979), 302-306. | Zbl 0409.12004

[006] [7] M. A. Stern, Zur Theorie der periodischen Kettenbrüche, J. Reine Angew. Math. 8 (1857), 1-102.