Prime producing polynomials: Proof of a conjecture by Mollin and Williams
Anitha Srinivasan
Acta Arithmetica, Tome 89 (1999), p. 1-7 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207255
@article{bwmeta1.element.bwnjournal-article-aav89i1p1bwm,
     author = {Anitha Srinivasan},
     title = {Prime producing polynomials: Proof of a conjecture by Mollin and Williams},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {1-7},
     zbl = {0927.11051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i1p1bwm}
}
Anitha Srinivasan. Prime producing polynomials: Proof of a conjecture by Mollin and Williams. Acta Arithmetica, Tome 89 (1999) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i1p1bwm/

[000] [Bu] D. Buell, Binary Quadratic Forms, Springer, New York, 1989.

[001] [C1] H. Cohn, Advanced Number Theory, Dover, New York, 1980.

[002] [C2] H. Cohn A Second Course in Number Theory, Wiley, New York, 1962.

[003] [L1] S. Louboutin, Prime producing quadratic polynomial and class numbers of real quadratic fields, Canad. J. Math. 42 (1990), 315-341.

[004] [L2] S. Louboutin Addendum to 'Prime producing quadratic polynomial and class numbers of real quadratic fields', Canad. J. Math. 42 (1990), 1131.

[005] [Mo] R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996.

[006] [MW] R. A. Mollin and H. C. Williams, On a determination of real quadratic fields of class number one and related continued fraction period length less than 25, Proc. Japan Acad. 67 (1991), 20-25. | Zbl 0743.11062