@article{bwmeta1.element.bwnjournal-article-aav88i4p363bwm, author = {Michael A. Bennett}, title = {On consecutive integers of the form ax$^2$, by$^2$ and cz$^2$}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {363-370}, zbl = {0928.11017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i4p363bwm} }
Michael A. Bennett. On consecutive integers of the form ax², by² and cz². Acta Arithmetica, Tome 89 (1999) pp. 363-370. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i4p363bwm/
[000] [1] W. S. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), 355-359. | Zbl 0848.11007
[001] [2] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[002] [3] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199. | Zbl 1044.11011
[003] [4] J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, II, Acta Arith. 78 (1997), 401-403. | Zbl 0870.11018
[004] [5] A. Khintchine, Continued Fractions, 3rd ed., P. Noordhoff, Groningen, 1963. | Zbl 0117.28503
[005] [6] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. | Zbl 0843.11036
[006] [7] W. Ljunggren, Litt om simultane Pellske ligninger, Norsk Mat. Tidsskr. 23 (1941), 132-138.
[007] [8] W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. f. Math. og Naturvidenskab B 45 (1942), 61-70. | Zbl 68.0069.01
[008] [9] D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), 52-66. | Zbl 0882.11016
[009] [10] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46. | Zbl 0641.10014
[010] [11] D. T. Walker, On the diophantine equation mX² - nY² = ± 1, Amer. Math. Monthly 74 (1967), 504-513. | Zbl 0154.29604
[011] [12] P. G. Walsh, On two classes of simultaneous Pell equations with no solutions, Math. Comp., to appear. | Zbl 0911.11017
[012] [13] P. G. Walsh, On integer solutions to x² - dy² = 1, z² - 2dy² = 1, Acta Arith. 82 (1997), 69-76.