Thue equations with composite fields
Yuri Bilu ; Guillaume Hanrot
Acta Arithmetica, Tome 89 (1999), p. 311-326 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207249
@article{bwmeta1.element.bwnjournal-article-aav88i4p311bwm,
     author = {Yuri Bilu and Guillaume Hanrot},
     title = {Thue equations with composite fields},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {311-326},
     zbl = {0934.11013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i4p311bwm}
}
Yuri Bilu; Guillaume Hanrot. Thue equations with composite fields. Acta Arithmetica, Tome 89 (1999) pp. 311-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i4p311bwm/

[000] [1] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.

[001] [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026

[002] [3] Yu. Bilu, Solving superelliptic Diophantine equations by the method of Gelfond-Baker, preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux 2, 1994.

[003] [4] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. | Zbl 0867.11017

[004] [5] Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. | Zbl 0915.11065

[005] [6] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, submitted. | Zbl 0995.11010

[006] [7] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.

[007] [8] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, 1993.

[008] [9] G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997.

[009] [10] G. Hanrot, Solving Thue equations without the full unit group, Math. Comp., to appear. | Zbl 0937.11063

[010] [11] A. K. Lenstra, H. W. Lenstra, jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. | Zbl 0488.12001

[011] [12] A. Pethő, Computational methods for the resolution of Diophantine equations, in: R. A. Mollin (ed.), Number Theory: Proc. First Conf. Canad. Number Theory Assoc. (Banff, 1988), de Gruyter, 1990, 477-492. | Zbl 0704.11006

[012] [13] A. Pethő and B. M. M. de Weger, Products of prime powers in binary recurrence sequences, Part I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1987), 713-727. | Zbl 0623.10011

[013] [14] M. E. Pohst, Computational Algebraic Number Theory, DMV Sem. 21, Birkhäuser, Basel, 1993.

[014] [15] M. E. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989. | Zbl 0685.12001

[015] [16] N. Smart, The solution of triangularly connected decomposable form equations, Math. Comp. 64 (1995), 819-840. | Zbl 0831.11027

[016] [17] C. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977. | Zbl 0366.12002

[017] [18] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. | Zbl 0657.10014

[018] [19] N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), 223-288. | Zbl 0773.11023

[019] [20] P. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888. | Zbl 0832.11009

[020] [21] B. M. M. de Weger, Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), 325-367. | Zbl 0625.10013