A classic theorem of Pólya shows that the function is the “smallest” integral-valued entire transcendental function. A variant due to Gel’fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin’s result together with a further generalization.
@article{bwmeta1.element.bwnjournal-article-aav88i3p239bwm, author = {Jonathan Pila and Fernando Rodriguez Villegas}, title = {Concordant sequences and integral-valued entire functions}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {239-268}, zbl = {0935.11026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i3p239bwm} }
Jonathan Pila; Fernando Rodriguez Villegas. Concordant sequences and integral-valued entire functions. Acta Arithmetica, Tome 89 (1999) pp. 239-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i3p239bwm/
[000] [1] J.-P. Bézivin, Itération de polynômes et fonctions entières arithmétiques, Acta Arith. 68 (1994), 11-25. MR 95k:30057.
[001] [2] J.-P. Bézivin, Suites d'entiers et fonctions entières arithmétiques, Ann. Fac. Sci. Toulouse Math. 3 (1994), 313-334. MR 96a:11098.
[002] [3] R. P. Boas, Comments on [15], in: George Pólya: Collected Papers, Vol. 1, R. P. Boas (ed.), M.I.T. Press, Cambridge, 1974, 771-773.
[003] [4] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972.
[004] [5] R. C. Buck, Integral valued entire functions, Duke Math. J. 15 (1948), 879-891. | Zbl 0033.36402
[005] [6] P. Bundschuh, A theorem of Gelfond via Schneider's method, in: New Trends in Probability and Statistics, F. Schweiger and E. Mantavicius (eds.), VSP, Utrecht, 1992, 9-15. | Zbl 0774.11033
[006] [7] K. Ford, personal communication of 3 April 1998.
[007] [8] A. O. Gel’fond, Sur les fonctions entières, qui prennent des valeurs entières dans les points , β est un nombre entier positif et n = 1,2,3,..., Mat. Sb. 40 (1933), 42-47 (in Russian; French summary). | Zbl 0007.12102
[008] [9] A. O. Gel'fond, Calculus of Finite Differences, authorised English translation of the third Russian edition, Hindustan Publishing Corporation, Delhi, 1971.
[009] [10] R. R. Hall, On pseudopolynomials, Mathematika 8 (1971), 71-77.
[010] [11] G. H. Hardy, On a theorem of Mr. G. Pólya, Proc. Cambridge Philos. Soc. 19 (1917), 60-63.
[011] [12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979. | Zbl 0423.10001
[012] [13] A. Perelli and U. Zannier, On recurrent mod p sequences, J. Reine Angew. Math. 348 (1984), 135-146. Math. Rev. 85g:11012. | Zbl 0517.10006
[013] [14] C. Pisot, Über ganzwertige ganze Funktionen, Jahresber. Deutsch. Math.-Verein. 52 (1942), 95-102. Math. Rev. 4, p. 270. | Zbl 68.0162.02
[014] [15] G. Pólya, Ueber ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1-16. Also in: Collected Papers, Vol. 1, R. P. Boas (ed.), M.I.T. Press, Cambridge, 1974, 1-16. | Zbl 45.0655.02
[015] [16] G. Pólya, Über ganze ganzwertige Funktionen, Nachr. Ges. Wiss. Göttingen 1920, 1-10. Also in: Collected Papers, Vol. 1, 131-140. | Zbl 47.0299.02
[016] [17] R. M. Robinson, Integer-valued entire functions, Trans. Amer. Math. Soc. 153 (1971), 451-468. | Zbl 0212.42201
[017] [18] A. Selberg, Über ganzwertige ganze transzendente Funktionen, Archiv for Math. og Naturvidenskab B. 44 (1941), 45-52. Also in: Collected Papers, Vol. 1, Springer, Berlin, 1989, 54-61.
[018] [19] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939. | Zbl 0022.14602