A family of elliptic ℚ-curves defined over biquadratic fields and their modularity
Takeshi Hibino ; Atsuki Umegaki
Acta Arithmetica, Tome 89 (1999), p. 181-190 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207238
@article{bwmeta1.element.bwnjournal-article-aav88i2p181bwm,
     author = {Takeshi Hibino and Atsuki Umegaki},
     title = {A family of elliptic $\mathbb{Q}$-curves defined over biquadratic fields and their modularity},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {181-190},
     zbl = {1044.11048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i2p181bwm}
}
Takeshi Hibino; Atsuki Umegaki. A family of elliptic ℚ-curves defined over biquadratic fields and their modularity. Acta Arithmetica, Tome 89 (1999) pp. 181-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i2p181bwm/

[000] [1] J. Cremona, Algorithm for Modular Elliptic Curves, 2nd ed., Cambridge Univ. Press, Cambridge, 1997. | Zbl 0872.14041

[001] [2] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math. 349, Springer, New York, 1986, 143-316. | Zbl 0281.14010

[002] [3] N. Elkies, A remark on elliptic K-curves, preprint, 1993.

[003] [4] B. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, Lecture Notes in Math. 776, Springer, New York, 1980.

[004] [5] Y. Hasegawa, K. Hashimoto and F. Momose, Modular Conjecture for ℚ-curves and QM-curves, preprint, 1996.

[005] [6] T. Hibino and A. Umegaki, Families of elliptic ℚ-curves defined over number fields with large degrees, Proc. Japan Acad. Ser. A 74 (1998), 20-24. | Zbl 0922.11049

[006] [7] K. Ribet, Abelian varieties over ℚ and modular forms, in: Algebra and Topology 1992 (Taejŏn), KAIST, 1992, 53-79.

[007] [8] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Publ. Math. Soc. Japan 11, Iwanami Shoten, 1971. | Zbl 0221.10029