The number of solutions of the Mordell equation
Dimitrios Poulakis
Acta Arithmetica, Tome 89 (1999), p. 173-179 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207237
@article{bwmeta1.element.bwnjournal-article-aav88i2p173bwm,
     author = {Dimitrios Poulakis},
     title = {The number of solutions of the Mordell equation},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {173-179},
     zbl = {0933.11008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i2p173bwm}
}
Dimitrios Poulakis. The number of solutions of the Mordell equation. Acta Arithmetica, Tome 89 (1999) pp. 173-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i2p173bwm/

[000] [1] A. Brumer and J. Silverman, The number of elliptic curves over ℚ with conductor N, Manuscripta Math. 91 (1996), 95-102. | Zbl 0868.11029

[001] [2] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. | Zbl 0521.10015

[002] [3] J. H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Ym=f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248. | Zbl 0611.10009

[003] [4] H. Hasse, Number Theory, Springer, Berlin, 1980.

[004] [5] S. Lang, Elliptic Functions, Addison-Wesley, 1973.

[005] [6] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585. | Zbl 0514.12003

[006] [7] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. | Zbl 0747.11026

[007] [8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.