Trigonal modular curves
Yuji Hasegawa ; Mahoro Shimura
Acta Arithmetica, Tome 89 (1999), p. 129-140 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207234
@article{bwmeta1.element.bwnjournal-article-aav88i2p129bwm,
     author = {Yuji Hasegawa and Mahoro Shimura},
     title = {Trigonal modular curves},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {129-140},
     zbl = {0947.11018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i2p129bwm}
}
Yuji Hasegawa; Mahoro Shimura. Trigonal modular curves. Acta Arithmetica, Tome 89 (1999) pp. 129-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i2p129bwm/

[000] [1] E. Arbarello et al., Geometry of Algebraic Curves, Vol. I, Grundlehren Math. Wiss. 267, Springer, 1985.

[001] [2] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160.

[002] [3] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, 1975, 74-144.

[003] [4] M. Furumoto and Y. Hasegawa, Hyperelliptic quotients of modular curves X₀(N), Tokyo J. Math., to appear. | Zbl 0947.11019

[004] [5] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, 1977.

[005] [6] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ₀(N), J. Math. Soc. Japan 26 (1974), 56-82. | Zbl 0266.12009

[006] [7] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561-577. | Zbl 0093.04502

[007] [8] S. L. Kleiman and D. Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163-176. | Zbl 0286.14005

[008] [9] F. Momose, p-torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 96 (1984), 139-165. | Zbl 0578.14021

[009] [10] F. Momose and S. Yamada, Another estimate of the level of d-gonal modular curves, preprint.

[010] [11] M. Newman, Conjugacy, genus, and class number, Math. Ann. 196 (1972), 198-217. | Zbl 0221.10030

[011] [12] K. V. Nguyen and M.-H. Saito, D-gonality of modular curves and bounding torsions, preprint.

[012] [13] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. | Zbl 0314.10018

[013] [14] B. Saint-Donat, On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157-175.

[014] [15] J. P. Serre, Local Fields, Grad. Texts in Math. 67, Springer, 1979.

[015] [16] M. Shimura, Defining equations of modular curves X₀(N), Tokyo J. Math. 18 (1995), 443-456. | Zbl 0865.11052

[016] [17] P. G. Zograf, Small eigenvalues of automorphic Laplacians in spaces of cusp forms, in: Automorphic Functions and Number Theory, II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 157-168 (in Russian). | Zbl 0536.10018