@article{bwmeta1.element.bwnjournal-article-aav88i1p67bwm, author = {D. I. Tolev}, title = {Arithmetic progressions of prime-almost-prime twins}, journal = {Acta Arithmetica}, volume = {89}, year = {1999}, pages = {67-98}, zbl = {0929.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav88i1p67bwm} }
D. I. Tolev. Arithmetic progressions of prime-almost-prime twins. Acta Arithmetica, Tome 89 (1999) pp. 67-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav88i1p67bwm/
[000] [1] Brüdern J., Fouvry E., Lagrange's Four Squares Theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96. | Zbl 0809.11060
[001] [2] Chen J., On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176. | Zbl 0319.10056
[002] [3] Davenport H., Multiplicative Number Theory (revised by H. Montgomery), 2nd ed., Springer, 1980. | Zbl 0453.10002
[003] [4] Halberstam H., Richert H.-E., Sieve Methods, Academic Press, London, 1974. | Zbl 0298.10026
[004] [5] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979. | Zbl 0423.10001
[005] [6] Heath-Brown D. R., Three primes and an almost-prime in arithmetic progression, J. London Math. Soc. (2) 23 (1981), 396-414. | Zbl 0425.10051
[006] [7] Heath-Brown D. R., Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365-1377. | Zbl 0478.10024
[007] [8] Iwaniec H., On sums of two norms from cubic fields, in: Journées de théorie additive des nombres, Université de Bordeaux I, 1977, 71-89.
[008] [9] Iwaniec H., Rosser's sieve, Acta Arith. 36 (1980), 171-202. | Zbl 0435.10029
[009] [10] Iwaniec H., A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. | Zbl 0444.10038
[010] [11] Karatsuba A. A., Principles of the Analytic Number Theory, Nauka, Moscow, 1983 (in Russian).
[011] [12] Maier H., Pomerance C., Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 322 (1990), 201-237. | Zbl 0706.11052
[012] [13] Peneva T. P., Tolev D. I., An additive problem with primes and almost-primes, Acta Arith. 83 (1998), 155-169. | Zbl 0898.11037
[013] [14] Tolev D. I., On the number of representations of an odd integer as a sum of three primes, one of which belongs to an arithmetic progression, Proc. Steklov. Inst. Math. 218 (1997). | Zbl 0911.11048
[014] [15] van der Corput J. G., Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), 1-50.
[015] [16] Vaughan R. C., The Hardy-Littlewood Method, Cambridge Univ. Press, 1981. | Zbl 0455.10034
[016] [17] Vinogradov I. M., Representation of an odd number as a sum of three primes, Dokl. Akad. Nauk SSSR 15 (1937), 169-172 (in Russian).