Solving elliptic diophantine equations: the general cubic case
Roelof J. Stroeker ; Benjamin M. M. de Weger
Acta Arithmetica, Tome 89 (1999), p. 339-365 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207225
@article{bwmeta1.element.bwnjournal-article-aav87i4p339bwm,
     author = {Roelof J. Stroeker and Benjamin M. M. de Weger},
     title = {Solving elliptic diophantine equations: the general cubic case},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {339-365},
     zbl = {0930.11015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav87i4p339bwm}
}
Roelof J. Stroeker; Benjamin M. M. de Weger. Solving elliptic diophantine equations: the general cubic case. Acta Arithmetica, Tome 89 (1999) pp. 339-365. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav87i4p339bwm/

[000] [BC70] A. Baker and J. Coates, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67 (1970), 595-602. | Zbl 0194.07601

[001] [BH96] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. | Zbl 0867.11017

[002] [BH98] Yu. Bilu and G. Hanrot, Solving superelliptic diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. | Zbl 0915.11065

[003] [BST97] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70. | Zbl 0876.11024

[004] [Co97] I. Connell, Elliptic Curve Handbook, available from the ftp site of McGill University in the directory math.mcgill.ca/pub/ECH1. From the same site the Apecs package can be downloaded.

[005] [Cr92] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1992. The programs mrank, mwrank, findinf may be downloaded from John Cremona's ftp site euclid.ex.ac.uk/pub/cremona.

[006] [D95] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N.S.) 62 (1995), iv + 143 pp.

[007] [GPZ94] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192. | Zbl 0816.11019

[008] [GPZ97] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on Mordell's elliptic curves, Collect. Math. 48 (1997), no. 1-2, 115-136. | Zbl 0865.11084

[009] [HS93] L. Habsieger and D. Stanton, More zeros of Krawtchouk polynomials, Graphs Combin. 9 (1993), 163-172. | Zbl 0805.33008

[010] [HP98] L. Hajdu and Á. Pintér, Combinatorial diophantine equations, preprint. | Zbl 0960.11018

[011] [H97] G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997.

[012] [KL96] I. Krasikov and S. Litsyn, On integral zeros of Krawtchouk polynomials, J. Combin. Theory Ser. A 74 (1996), 71-99. | Zbl 0853.33008

[013] [N28] T. Nagel, Sur les propriétés des cubiques planes du premier genre, Acta Math. 52 (1928), 93-126. | Zbl 54.0403.03

[014] [Sch92] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. | Zbl 0747.11026

[015] [Sie29] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1929, 1-41.

[016] [Sik95] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. | Zbl 0852.11028

[017] [Sil90] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. | Zbl 0729.14026

[018] [Sm94] N. P. Smart, S-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), 391-399. | Zbl 0817.11031

[019] [St95] R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Math. 97 (1995), 295-307. | Zbl 0837.11012

[020] [ST94] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196. | Zbl 0805.11026

[021] [ST97] R. J. Stroeker and N. Tzanakis, On the elliptic logarithm method for elliptic diophantine equations: Reflections and an improvement, Experiment. Math., to appear. | Zbl 0979.11060

[022] [SdW97] R. J. Stroeker and B. M. M. de Weger, Elliptic binomial diophantine equations, Math. Comp., to appear. | Zbl 0920.11014

[023] [SdW98] R. J. Stroeker and B. M. M. de Weger, On integral zeroes of binary Krawtchouk polynomials, Proceedings NMC 1998 (Dutch Math. Congress, Twente Un.), to appear. | Zbl 1069.33010

[024] [Tz96] N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith. 75 (1996), 165-190.

[025] [TdW89] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. | Zbl 0657.10014

[026] [dW89] B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract 65, Stichting Mathematisch Centrum, Amsterdam, 1989.

[027] [Z87] D. Zagier, Large integral points on elliptic curves, Math. Comp.48 (1987), 425-436. | Zbl 0611.10008