The set of solutions of a polynomial-exponential equation
Scott Ahlgren
Acta Arithmetica, Tome 89 (1999), p. 189-207 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207215
@article{bwmeta1.element.bwnjournal-article-aav87i3p189bwm,
     author = {Scott Ahlgren},
     title = {The set of solutions of a polynomial-exponential equation},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {189-207},
     zbl = {0930.11018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav87i3p189bwm}
}
Scott Ahlgren. The set of solutions of a polynomial-exponential equation. Acta Arithmetica, Tome 89 (1999) pp. 189-207. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav87i3p189bwm/

[000] [1] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, 1959. | Zbl 0086.26203

[001] [2] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001

[002] [3] M. Laurent, Équations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327.

[003] [4] M. Laurent, Équations exponentielles-polynômes et suites récurrentes linéaires, II, J. Number Theory 31 (1989), 24-53. | Zbl 0661.10027

[004] [5] H. P. Schlickewei, Lower bounds for heights on finitely generated groups, Monatsh. Math. 123 (1997), 171-178. | Zbl 0973.11067

[005] [6] H. P. Schlickewei and W. M. Schmidt, On polynomial-exponential equations, Math. Ann. 296 (1993), 339-361. | Zbl 0805.11029

[006] [7] H. P. Schlickewei and W. M. Schmidt, The number of solutions of polynomial-exponential equations, Compositio Math., to appear. | Zbl 0949.11020