The Diophantine equation X² - db²Y⁴ = 1
Gary Walsh
Acta Arithmetica, Tome 84 (1998), p. 179-188 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207213
@article{bwmeta1.element.bwnjournal-article-aav87i2p179bwm,
     author = {Gary Walsh},
     title = {The Diophantine equation X2 - db2Y4 = 1},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {179-188},
     zbl = {0919.11024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav87i2p179bwm}
}
Gary Walsh. The Diophantine equation X² - db²Y⁴ = 1. Acta Arithmetica, Tome 84 (1998) pp. 179-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav87i2p179bwm/

[000] [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. | Zbl 0174.33803

[001] [2] M. A. Bennett and P. G. Walsh, The Diophantine equation b²X⁴ - dY² = 1, Proc. Amer. Math. Soc., to appear. | Zbl 0980.11021

[002] [3] J. H. Chen and P. M. Voutier, A complete solution of the Diophantine equation x² + 1 = dy⁴ and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71-99. | Zbl 0869.11025

[003] [4] J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, II, Acta Arith. 78 (1997), 401-403. | Zbl 0870.11018

[004] [5] M. Langevin, Cas d'inégalité pour le théorème de Mason et applications de la conjecture (abc), C. R. Acad. Sci. Paris Sér. I 317 (1993), 441-444.

[005] [6] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448. | Zbl 56.0874.04

[006] [7] W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadratischer und rein-biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse unbestimmter Gleichungen vierten Grades, Skr. Norske Vid.-Akad. Oslo 1936, no. 12, 1-73.

[007] [8] W. Ljunggren, Zur Theorie der Gleichung x² + 1 = Dy⁴, Avh. Norske Vid. Akad. Oslo 1942, no. 5, 1-26.

[008] [9] W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. Math. Naturv. 45 (1942), no. 5, 61-70. | Zbl 68.0069.01

[009] [10] M. Mignotte et A. Pethő, Sur les carrés dans certaines suites de Lucas, J. Théor. Nombres Bordeaux 5 (1993), 333-341. | Zbl 0795.11007

[010] [11] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, New York, 1986. | Zbl 0606.10011

[011] [12] P. G. Walsh, A note on a theorem of Ljunggren and the Diophantine equations x² - kxy² + y⁴ = 1,4, Arch. Math. (Basel), to appear. | Zbl 0941.11012