@article{bwmeta1.element.bwnjournal-article-aav87i2p103bwm, author = {Leopoldo Kulesz}, title = {Courbes alg\'ebriques de genre $\geq$ 2 poss\'edant de nombreux points rationnels}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {103-120}, zbl = {0920.11040}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav87i2p103bwm} }
Leopoldo Kulesz. Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels. Acta Arithmetica, Tome 84 (1998) pp. 103-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav87i2p103bwm/
[000] [A-M] A. O. L. Atkin and F. Morain, Finding suitable curves for the Elliptic Curve Method of factorization, Math. Comp. 60 (1993), 399-405.
[001] [CHM1] L. Caporaso, J. Harris and B. Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), 1-35. | Zbl 0872.14017
[002] [CHM2] L. Caporaso, J. Harris and B. Mazur, How many rational points can a curve have?, dans: The Moduli Space of Curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, 1995, 13-31.
[003] [C-F] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, London Math. Soc. Lecture Note Ser. 230, Cambridge Univ. Press, 1996. | Zbl 0857.14018
[004] [Dix] J. Dixmier, On the projective invariant of quartic plane curves, Adv. Math. 64 (1987), 279-304. | Zbl 0668.14006
[005] [EGH] D. Eisenbud, M. Green and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324. | Zbl 0871.14024
[006] [Elk1] N. Elkies, Curves with many points, preprint, 1995.
[007] [Elk2] N. Elkies, Communication personnelle, 1997.
[008] [K-K] W. Keller et L. Kulesz, Courbes algébriques de genre 2 et 3 possédant de nombreux points rationnels, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1469-1472. | Zbl 0873.11038
[009] [Kul] L. Kulesz, Courbes algébriques de genre 2 possédant de nombreux points rationnels, ibid., 91-94.
[010] [Lep] F. Leprévost, Familles de courbes hyperelliptiques, dans : Séminaire de Théorie des nombres, Paris, 1991-1992, S. David (ed.), Progr. Math. 116, Birkhäuser, 1993, 107-119.
[011] [Maz] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-169.
[012] [Mes] J.-F. Mestre, Construction explicite de courbes de genre 2 à partir de leurs modules, dans : Effective Methods in Algebraic Geometry, Progr. Math. 94, Birkhäuser, 1991, 313-334.
[013] [Sta] C. Stahlke, Algebraic curves over Q with many rational points and minimal automorphism group, Internat. Math. Res. Notices 1997, no. 1, 1-4. | Zbl 0881.14009
[014] [Suy] H. Suyama, Informal preliminary report (8), 1985.
[015] [Vel] J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A 273 (1971), 238-241.