Fitting ideals of class groups in a p-extension
Pietro Cornacchia
Acta Arithmetica, Tome 84 (1998), p. 79-88 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207206
@article{bwmeta1.element.bwnjournal-article-aav87i1p79bwm,
     author = {Pietro Cornacchia},
     title = {Fitting ideals of class groups in a $$\mathbb{Z}$\_p$-extension},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {79-88},
     zbl = {0926.11084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav87i1p79bwm}
}
Pietro Cornacchia. Fitting ideals of class groups in a $ℤ_p$-extension. Acta Arithmetica, Tome 84 (1998) pp. 79-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav87i1p79bwm/

[000] [1] N. Bourbaki, Algebra I, Springer, New York, 1989.

[001] [2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967. | Zbl 0153.07403

[002] [3] P. Cornacchia, Anderson's module for cyclotomic fields of prime conductor, J. Number Theory 67 (1997), 252-276. | Zbl 0888.11045

[003] [4] P. Cornacchia and C. Greither, Fitting ideals of class groups of real fields of prime power conductor, J. Number Theory, to appear.

[004] [5] M. Grandet et J.-F. Jaulent, Sur la capitulation dans une l-extension, J. Reine Angew. Math. 362 (1985), 213-217. | Zbl 0564.12011

[005] [6] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. | Zbl 0334.12013

[006] [7] C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449-499. | Zbl 0729.11053

[007] [8] C. Greither, The structure of some minus class groups, and Chinburg's third conjecture for abelian fields, Math. Z., to appear. | Zbl 0919.11072

[008] [9] K. Iwasawa, On l-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326.

[009] [10] J. M. Kim, S. Bae and I.-S. Lee, Cyclotomic units in p-extensions, Israel J. Math. 75 (1991), 161-165. | Zbl 0765.11042

[010] [11] J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135-155. | Zbl 0840.11043

[011] [12] L. V. Kuz'min, On formulae for the class number of real Abelian fields, Russian Acad. Sci. Izv. Math. 60 (1996), 695-761.

[012] [13] S. Lang, Cyclotomic Fields I and II, combined 2nd ed., Grad. Texts in Math. 121, Springer, New York, 1990. | Zbl 0704.11038

[013] [14] B. Mazur and A. Wiles, Class fields of abelian extensions of ℚ, Invent. Math. 76 (1984), 179-330. | Zbl 0545.12005

[014] [15] M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field, J. Number Theory 64 (1997), 211-222. | Zbl 0879.11058

[015] [16] M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. Number Theory., 223-232. | Zbl 0879.11059

[016] [17] K. Rubin, The Main Conjecture, Appendix to [13].

[017] [18] R. Schoof, The structure of the minus class groups of abelian number fields, in: Séminaire de Théorie des Nombres, Paris 1988-89, Progr. Math. 91, Birkhäuser, 1991, 185-204.

[018] [19] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | Zbl 0465.12001

[019] [20] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer, New York, 1997. | Zbl 0966.11047