@article{bwmeta1.element.bwnjournal-article-aav86i4p289bwm, author = {Mingzhi Xu}, title = {Cohomology groups of units in $$\mathbb{Z}$^d\_p$-extensions}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {289-304}, zbl = {0923.11157}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav86i4p289bwm} }
Mingzhi Xu. Cohomology groups of units in $ℤ^d_p$-extensions. Acta Arithmetica, Tome 84 (1998) pp. 289-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav86i4p289bwm/
[000] [1] J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, 1967.
[001] [2] R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number field, Amer. J. Math. 95 (1973), 204-214. | Zbl 0268.12005
[002] [3] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. | Zbl 0403.12004
[003] [4] K. Iwasawa, On -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[004] [5] K. Iwasawa, On cohomology groups of units for -extensions, Amer. J. Math. 105 (1983), 189-200. | Zbl 0525.12009
[005] [6] S. Lang, Cyclotomic Fields, I and II, Springer, 1990. | Zbl 0704.11038
[006] [7] H. Matsumura, Commutative Algebra, Math. Lecture Note Ser. 56, Benjamin// Cummings, 1980.
[007] [8] P. Monsky, On p-adic power series, Math. Ann. 255 (1981), 217-227. | Zbl 0437.12016
[008] [9] K. Rubin, The 'main conjecture' of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. | Zbl 0737.11030
[009] [10] S. Shatz, Profinite Groups, Arithmetic, and Geometry, Princeton Univ. Press, 1972. | Zbl 0236.12002
[010] [11] L. Washington, Introduction to Cyclotomic Fields, Springer, 1982. | Zbl 0484.12001
[011] [12] J.-P. Wintenberger, Structure galoisienne de limites projectives d'unités locales, Compositio Math. 42 (1981), 89-103. | Zbl 0414.12008