@article{bwmeta1.element.bwnjournal-article-aav86i3p277bwm, author = {Harald Niederreiter and Chaoping Xing}, title = {Global function fields with many rational places over the quinary field. II}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {277-288}, zbl = {0922.11098}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav86i3p277bwm} }
Harald Niederreiter; Chaoping Xing. Global function fields with many rational places over the quinary field. II. Acta Arithmetica, Tome 84 (1998) pp. 277-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav86i3p277bwm/
[000] [1] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. | Zbl 0863.11040
[001] [2] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996. | Zbl 0874.11004
[002] [3] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. | Zbl 0292.12018
[003] [4] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. | Zbl 0793.11015
[004] [5] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269-296. | Zbl 0932.11050
[005] [6] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76. | Zbl 0891.11057
[006] [7] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81-100. | Zbl 0886.11033
[007] [8] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930. | Zbl 0958.11075
[008] [9] H. Niederreiter and C. P. Xing, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter et al. (eds.), Lecture Notes in Statist. 127, Springer, New York, 1998, 139-160. | Zbl 0884.11031
[009] [10] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Number Theory, K. Győry, A. Pethő, and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 423-443. | Zbl 0923.11093
[010] [11] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, in: Proc. Finite Fields Conf. (Waterloo, 1997), Contemp. Math., Amer. Math. Soc., Providence, to appear. | Zbl 0960.11033
[011] [12] H. Niederreiter and C. P. Xing, Nets, (t,s)-sequences, and algebraic geometry, in: Pseudo- and Quasi- Random Point Sets, P. Hellekalek and G. Larcher (eds.), Lecture Notes in Statist., Springer, New York, to appear.
[012] [13] O. Pretzel, Codes and Algebraic Curves, Oxford Univ. Press, Oxford, 1998.
[013] [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. | Zbl 0632.12017
[014] [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. | Zbl 0538.14015
[015] [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
[016] [17] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169-189. | Zbl 0884.11027
[017] [18] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
[018] [19] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, Monatsh. Math., to appear. | Zbl 0982.11034