Integer solutions of a sequence of decomposable form inequalities
K. Győry ; Min Ru
Acta Arithmetica, Tome 84 (1998), p. 227-237 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207192
@article{bwmeta1.element.bwnjournal-article-aav86i3p227bwm,
     author = {K. Gy\H ory and Min Ru},
     title = {Integer solutions of a sequence of decomposable form inequalities},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {227-237},
     zbl = {0918.11022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav86i3p227bwm}
}
K. Győry; Min Ru. Integer solutions of a sequence of decomposable form inequalities. Acta Arithmetica, Tome 84 (1998) pp. 227-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav86i3p227bwm/

[000] [EGy1] J. H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith. 50 (1988), 357-379. | Zbl 0595.10013

[001] [EGy2] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 175-202.

[002] [EGy3] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. | Zbl 0746.11020

[003] [EGy4] J. H. Evertse and K. Győry, The number of families of solutions of decomposable form equations, Acta Arith. 80 (1997), 367-394. | Zbl 0886.11015

[004] [Gy1] K. Győry, Some applications of decomposable form equations to resultant equations, Colloq. Math. 65 (1993), 267-275. | Zbl 0820.11018

[005] [Gy2] K. Győry, On the number of pairs of polynomials with given resultant or given semi-resultant, Acta Sci. Math. (Szeged) 57 (1993), 515-529. | Zbl 0798.11043

[006] [Gy3] K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith. 67 (1994), 283-296. | Zbl 0814.11050

[007] [L] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. | Zbl 0528.14013

[008] [RV] M. Ru and P. Vojta, Schmidt's subspace theorem with moving targets, Invent. Math. 127 (1997), 51-65. | Zbl 1013.11044

[009] [RW] M. Ru and P. M. Wong, Integral points of Pn - 2n+1 hyperplanes in general position, Invent. Math. 106 (1991), 195-216. | Zbl 0758.14007

[010] [Schl] H. P. Schlickewei, Inequalities for decomposable forms, Astérisque 41-42 (1977), 267-271.

[011] [Sch1] W. M. Schmidt, Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications, Academic Press, New York, 1973, 235-253.

[012] [Sch2] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. | Zbl 0421.10019

[013] [W] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., Providence, R.I., 1971, 213-247. | Zbl 0223.10017