Growth of the product j=1n(1-xaj)
J. P. Bell ; P. B. Borwein ; L. B. Richmond
Acta Arithmetica, Tome 84 (1998), p. 155-170 / Harvested from The Polish Digital Mathematics Library

We estimate the maximum of j=1n|1-xaj| on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when aj is jk or when aj is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when aj is j.    In contrast we show, under fairly general conditions, that the maximum is less than 2n/nr, where r is an arbitrary positive number. One consequence is that the number of partitions of m with an even number of parts chosen from a,...,an is asymptotically equal to the number of such partitions with an odd number of parts when ai satisfies these general conditions.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207187
@article{bwmeta1.element.bwnjournal-article-aav86i2p155bwm,
     author = {J. P. Bell and P. B. Borwein and L. B. Richmond},
     title = {Growth of the product $$\prod$^n\_{j=1} (1-x^{a\_j})$
            },
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {155-170},
     zbl = {0918.11054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav86i2p155bwm}
}
J. P. Bell; P. B. Borwein; L. B. Richmond. Growth of the product $∏^n_{j=1} (1-x^{a_j})$
            . Acta Arithmetica, Tome 84 (1998) pp. 155-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav86i2p155bwm/

[00000] [1] F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 4 (1961), 7-12. | Zbl 0119.04304

[00001] [2] A. S. Belov and S. V. Konyagin, On estimates for the constant term of a nonnegative trigonometric polynomial with integral coefficients, Mat. Zametki 59 (1996), 627-629 (in Russian).

[00002] [3] P. Borwein, Some restricted partition functions, J. Number Theory 45 (1993), 228-240. | Zbl 0788.11043

[00003] [4] P. Borwein and C. Ingalls, The Prouhet, Tarry, Escott problem, Enseign. Math. 40 (1994), 3-27. | Zbl 0810.11016

[00004] [5] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980. | Zbl 0453.10002

[00005] [6] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001

[00006] [7] P. Erdős, Problems and results on diophantine approximation, in: Asymptotic Distribution Modulo 1, J. F. Koksma and L. Kuipers (eds.), Noordhoff, 1962.

[00007] [8] P. Erdős and G. Szekeres, On the product k=1n(1-zka), Publ. Inst. Math. (Beograd) 13 (1959), 29-34.

[00008] [9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford, 1979. | Zbl 0423.10001

[00009] [10] M. N. Kolountzakis, On nonnegative cosine polynomials with nonnegative integral coefficients, Proc. Amer. Math. Soc. 120 (1994), 157-163. | Zbl 0787.42002

[00010] [11] R. Maltby, Root systems and the Erdős-Szekeres Problem, Acta Arith. 81 (1997), 229-245. | Zbl 0881.11030

[00011] [12] A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), 412-420. | Zbl 0476.30005

[00012] [13] A. M. Odlyzko and L. B. Richmond, On the unimodality of some partition polynomials, European J. Combin. 3 (1982), 69-84. | Zbl 0482.10015

[00013] [14] K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 241-259. | Zbl 0057.03902

[00014] [15] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86. | Zbl 61.0170.02

[00015] [16] C. Sudler, An estimate for a restricted partition function, Quart. J. Math. Oxford Ser. (2) 15 (1964), 1-10. | Zbl 0151.01402

[00016] [17] E. M. Wright, Proof of a conjecture of Sudler, Quart. J. Math. Oxford Ser., 11-15. | Zbl 0151.01403

[00017] [18] E. M. Wright, A closer estimation for a restricted partition function, Quart. J. Math. Oxford Ser., 283-287. | Zbl 0151.01401