We estimate the maximum of on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when is or when is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when is j. In contrast we show, under fairly general conditions, that the maximum is less than , where r is an arbitrary positive number. One consequence is that the number of partitions of m with an even number of parts chosen from is asymptotically equal to the number of such partitions with an odd number of parts when satisfies these general conditions.
@article{bwmeta1.element.bwnjournal-article-aav86i2p155bwm, author = {J. P. Bell and P. B. Borwein and L. B. Richmond}, title = {Growth of the product $$\prod$^n\_{j=1} (1-x^{a\_j})$ }, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {155-170}, zbl = {0918.11054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav86i2p155bwm} }
J. P. Bell; P. B. Borwein; L. B. Richmond. Growth of the product $∏^n_{j=1} (1-x^{a_j})$ . Acta Arithmetica, Tome 84 (1998) pp. 155-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav86i2p155bwm/
[00000] [1] F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 4 (1961), 7-12. | Zbl 0119.04304
[00001] [2] A. S. Belov and S. V. Konyagin, On estimates for the constant term of a nonnegative trigonometric polynomial with integral coefficients, Mat. Zametki 59 (1996), 627-629 (in Russian).
[00002] [3] P. Borwein, Some restricted partition functions, J. Number Theory 45 (1993), 228-240. | Zbl 0788.11043
[00003] [4] P. Borwein and C. Ingalls, The Prouhet, Tarry, Escott problem, Enseign. Math. 40 (1994), 3-27. | Zbl 0810.11016
[00004] [5] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980. | Zbl 0453.10002
[00005] [6] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001
[00006] [7] P. Erdős, Problems and results on diophantine approximation, in: Asymptotic Distribution Modulo 1, J. F. Koksma and L. Kuipers (eds.), Noordhoff, 1962.
[00007] [8] P. Erdős and G. Szekeres, On the product , Publ. Inst. Math. (Beograd) 13 (1959), 29-34.
[00008] [9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford, 1979. | Zbl 0423.10001
[00009] [10] M. N. Kolountzakis, On nonnegative cosine polynomials with nonnegative integral coefficients, Proc. Amer. Math. Soc. 120 (1994), 157-163. | Zbl 0787.42002
[00010] [11] R. Maltby, Root systems and the Erdős-Szekeres Problem, Acta Arith. 81 (1997), 229-245. | Zbl 0881.11030
[00011] [12] A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), 412-420. | Zbl 0476.30005
[00012] [13] A. M. Odlyzko and L. B. Richmond, On the unimodality of some partition polynomials, European J. Combin. 3 (1982), 69-84. | Zbl 0482.10015
[00013] [14] K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 241-259. | Zbl 0057.03902
[00014] [15] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86. | Zbl 61.0170.02
[00015] [16] C. Sudler, An estimate for a restricted partition function, Quart. J. Math. Oxford Ser. (2) 15 (1964), 1-10. | Zbl 0151.01402
[00016] [17] E. M. Wright, Proof of a conjecture of Sudler, Quart. J. Math. Oxford Ser., 11-15. | Zbl 0151.01403
[00017] [18] E. M. Wright, A closer estimation for a restricted partition function, Quart. J. Math. Oxford Ser., 283-287. | Zbl 0151.01401