A supersingular congruence for modular forms
Andrew Baker
Acta Arithmetica, Tome 84 (1998), p. 91-100 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207182
@article{bwmeta1.element.bwnjournal-article-aav86i1p91bwm,
     author = {Andrew Baker},
     title = {A supersingular congruence for modular forms},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {91-100},
     zbl = {1101.11318},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav86i1p91bwm}
}
Andrew Baker. A supersingular congruence for modular forms. Acta Arithmetica, Tome 84 (1998) pp. 91-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav86i1p91bwm/

[000] [1] A. Baker, Isogenies of supersingular elliptic curves over finite fields and operations in elliptic cohomology, in preparation.

[001] [2] D. A. Cox, z Primes of the Form x² + ny². Fermat, Class Field Theory and Complex Multiplication, Wiley, 1989.

[002] [3] D. Husemoller, Elliptic Curves, Springer, 1987.

[003] [4] M. Kaneko and D. Zagier, z Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, preprint.

[004] [5] N. M. Katz, z p-adic properties of modular schemes and modular forms, in: Lecture Notes in Math. 350, Springer, 1973, 69-190.

[005] [6] P. S. Landweber, Supersingular elliptic curves and congruences for Legendre polynomials, in: Lecture Notes in Math. 1326, Springer, 1988, 69-93.

[006] [7] J. Lubin, J.-P. Serre and J. Tate, Elliptic curves and formal groups, mimeographed notes from the Woods Hole conference, available at http://www.ma.utexas. edu/ voloch/lst.html.

[007] [8] G. Robert, Congruences entre séries d'Eisenstein, dans le cas supersingulier, Invent. Math. 61 (1980), 103-158. | Zbl 0442.10020

[008] [9] H.-G. Rück, A note on elliptic curves over finite fields, Math. Comp. 49 (1987), 301-304. | Zbl 0628.14019

[009] [10] J.-P. Serre, z Congruences et formes modulaires (d’après H. P. F. Swinnerton-Dyer), Sém. Bourbaki 24e Année, 1971/2, No. 416, Lecture Notes in Math. 317, Springer, 1973, 319-338.

[010] [11] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, Lecture Notes in Math. 350, Springer, 1973, 191-268.

[011] [12] E. de Shalit, z Kronecker's polynomial, supersingular elliptic curves, and p-adic periods of modular curves, in: Contemp. Math. 165, Amer. Math. Soc., 1994, 135-148. | Zbl 0863.14015

[012] [13] J. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. | Zbl 0585.14026

[013] [14] J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206. | Zbl 0296.14018

[014] [15] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. | Zbl 0147.20303

[015] [16] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560. | Zbl 0188.53001

[016] [17] W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 53-64. | Zbl 0216.33102