@article{bwmeta1.element.bwnjournal-article-aav85i4p389bwm, author = {Glyn Harman}, title = {On the Erd\H os-Tur\'an inequality for balls}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {389-396}, zbl = {0918.11044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i4p389bwm} }
Glyn Harman. On the Erdős-Turán inequality for balls. Acta Arithmetica, Tome 84 (1998) pp. 389-396. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i4p389bwm/
[000] [1] R. C. Baker, Diophantine Inequalities, Oxford Univ. Press, 1986. | Zbl 0592.10029
[001] [2] J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge Univ. Press, 1987. | Zbl 0617.10039
[002] [3] T. Cochrane, Trigonometric approximation and uniform distribution modulo 1, Proc. Amer. Math. Soc. 103 (1988), 695-702. | Zbl 0667.10031
[003] [4] P. Erdős and P. Turán, On a problem in the theory of uniform distribution, I, Indag. Math. 10 (1948), 370-378.
[004] [5] G. Harman, Small fractional parts of additive forms, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 339-347. | Zbl 0792.11018
[005] [6] G. Harman, Metric Number Theory, Oxford Univ. Press, 1998. | Zbl 1081.11057
[006] [7] J. J. Holt, On a form of the Erdős-Turán inequality, Acta Arith. 74 (1996), 61-66. | Zbl 0851.11042
[007] [8] J. J. Holt and J. D. Vaaler, The Beurling-Selberg extremal functions for a ball in Euclidean space, Duke Math. J. 83 (1996), 203-248. | Zbl 0859.30029
[008] [9] J. F. Koksma, Some theorems on Diophantine inequalities, Math. Centrum Amsterdam Scriptum no. 5.
[009] [10] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, R.I., 1994. | Zbl 0814.11001
[010] [11] W. M. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc. 110 (1964), 493-518. | Zbl 0199.09402
[011] [12] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. | Zbl 0232.42007
[012] [13] P. Szüsz, Über ein Problem der Gleichverteilung, in: Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 1950, 461-472.
[013] [14] S. K. Zaremba, Good lattice points in the sense of Hlawka and Monte Carlo integration, Monatsh. Math. 72 (1968), 264-269. | Zbl 0195.19501