The results of [2] on the congruence of Ankeny-Artin-Chowla type modulo p² for real subfields of of a prime degree l is simplified. This is done on the basis of a congruence for the Gauss period (Theorem 1). The results are applied for the quadratic field ℚ(√p), p ≡ 5 (mod 8) (Corollary 1).
@article{bwmeta1.element.bwnjournal-article-aav85i4p377bwm, author = {Stanislav Jakubec}, title = {Note on the congruence of Ankeny-Artin-Chowla type modulo p$^2$}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {377-388}, zbl = {0912.11041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i4p377bwm} }
Stanislav Jakubec. Note on the congruence of Ankeny-Artin-Chowla type modulo p². Acta Arithmetica, Tome 84 (1998) pp. 377-388. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i4p377bwm/
[000] [1] E. R. Hansen, A Table of Series and Products, Prentice-Hall, 1973.
[001] [2] S. Jakubec, Congruence of Ankeny-Artin-Chowla type modulo p² for cyclic fields of prime degree l, Acta Arith. 74 (1996), 293-310. | Zbl 0853.11086
[002] [3] S. Jakubec, The congruence for Gauss's period, J. Number Theory 48 (1994), 36-45. | Zbl 0807.11049
[003] [4] S. Jakubec, On Vandiver's conjecture, Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. | Zbl 0828.11059