The purpose of this paper is to generalize some seminal results in the literature concerning the interrelationships between Legendre symbols and continued fractions. We introduce the power of ideal theory into the arena. This allows significant improvements over the existing results via the infrastructure of real quadratic fields.
@article{bwmeta1.element.bwnjournal-article-aav85i4p331bwm, author = {R. A. Mollin}, title = {Jacobi symbols, ambiguous ideals, and continued fractions}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {331-349}, zbl = {0916.11054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i4p331bwm} }
R. A. Mollin. Jacobi symbols, ambiguous ideals, and continued fractions. Acta Arithmetica, Tome 84 (1998) pp. 331-349. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i4p331bwm/
[000] [1] P. Chowla and S. Chowla, Problems on periodic simple continued fractions, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 3745. | Zbl 0247.10019
[001] [2] H. Cohn, A Second Course in Number Theory, Wiley, New York, 1962.
[002] [3] C. Friesen, Legendre symbols and continued fractions, Acta Arith. 59 (1991), 365-379. | Zbl 0706.11004
[003] [4] R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1995.
[004] [5] A. Schinzel, On two conjectures of P. Chowla and S. Chowla concerning continued fractions, Ann. Mat. Pura Appl. 98 (1974), 111-117. | Zbl 0281.10013