We define a sequence of rational integers for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula . This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].
@article{bwmeta1.element.bwnjournal-article-aav85i3p249bwm, author = {Tsutomu Shimada}, title = {Index for subgroups of the group of units in number fields}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {249-263}, zbl = {0917.11057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i3p249bwm} }
Tsutomu Shimada. Index for subgroups of the group of units in number fields. Acta Arithmetica, Tome 84 (1998) pp. 249-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i3p249bwm/
[000] [1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124. | Zbl 0171.01105
[001] [2] P. Dénes, Über irreguläre Kreiskörper, Publ. Math. Debrecen 3 (1953), 17-23.
[002] [3] P. Dénes, Über Grundeinheitssysteme der irregulären Kreiskörper von besonderen Kongruenzeigenschaften, Publ. Math. Debrecen 3 (1954), 195-204. | Zbl 0058.26902
[003] [4] P. Dénes, Über den zweiten Faktor der Klassenzahl und den Irregularitätsgrad der irregulären Kreiskörper, Publ. Math. Debrecen 4 (1956), 163-170. | Zbl 0071.26505
[004] [5] F. Kurihara, On the p-adic expansion of units of cyclotomic fields, J. Number Theory 32 (1989), 226-253. | Zbl 0689.12005
[005] [6] L. C. Washington, Units of irregular cyclotomic fields, Illinois J. Math. 23 (1979), 635-647. | Zbl 0427.12004
[006] [7] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1997. | Zbl 0966.11047