Index for subgroups of the group of units in number fields
Tsutomu Shimada
Acta Arithmetica, Tome 84 (1998), p. 249-263 / Harvested from The Polish Digital Mathematics Library

We define a sequence of rational integers ui(E) for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula vp([E:E'])=i=1rui(E')-ui(E). This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:207167
@article{bwmeta1.element.bwnjournal-article-aav85i3p249bwm,
     author = {Tsutomu Shimada},
     title = {Index for subgroups of the group of units in number fields},
     journal = {Acta Arithmetica},
     volume = {84},
     year = {1998},
     pages = {249-263},
     zbl = {0917.11057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i3p249bwm}
}
Tsutomu Shimada. Index for subgroups of the group of units in number fields. Acta Arithmetica, Tome 84 (1998) pp. 249-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i3p249bwm/

[000] [1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124. | Zbl 0171.01105

[001] [2] P. Dénes, Über irreguläre Kreiskörper, Publ. Math. Debrecen 3 (1953), 17-23.

[002] [3] P. Dénes, Über Grundeinheitssysteme der irregulären Kreiskörper von besonderen Kongruenzeigenschaften, Publ. Math. Debrecen 3 (1954), 195-204. | Zbl 0058.26902

[003] [4] P. Dénes, Über den zweiten Faktor der Klassenzahl und den Irregularitätsgrad der irregulären Kreiskörper, Publ. Math. Debrecen 4 (1956), 163-170. | Zbl 0071.26505

[004] [5] F. Kurihara, On the p-adic expansion of units of cyclotomic fields, J. Number Theory 32 (1989), 226-253. | Zbl 0689.12005

[005] [6] L. C. Washington, Units of irregular cyclotomic fields, Illinois J. Math. 23 (1979), 635-647. | Zbl 0427.12004

[006] [7] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1997. | Zbl 0966.11047