@article{bwmeta1.element.bwnjournal-article-aav85i3p235bwm, author = {G\"unter Lettl}, title = {Relative Galois module structure of integers of local abelian fields}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {235-248}, zbl = {0910.11050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i3p235bwm} }
Günter Lettl. Relative Galois module structure of integers of local abelian fields. Acta Arithmetica, Tome 84 (1998) pp. 235-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i3p235bwm/
[000] [1] F. Bertrandias et M.-J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sci. Paris Sér. A 274 (1972), 1330-1333. | Zbl 0235.12007
[001] [2] W. Bley, A Leopoldt-type result for rings of integers of cyclotomic extensions, Canad. Math. Bull. 38 (1995), 141-148. | Zbl 0830.11037
[002] [3] J. Brinkhuis, Normal integral bases and complex conjugation, J. Reine Angew. Math. 375/376 (1987), 157-166. | Zbl 0609.12009
[003] [4] N. P. Byott, Galois structure of ideals in wildly ramified abelian p-extensions of a p-adic field, and some applications, J. Théor. Nombres Bordeaux 9 (1997), 201-219. | Zbl 0889.11040
[004] [5] N. P. Byott and G. Lettl, Relative Galois module structure of integers of abelian fields, ibid. 8 (1996), 125-141. | Zbl 0859.11059
[005] [6] S.-P. Chan and C.-H. Lim, Relative Galois module structure of rings of integers of cyclotomic fields, J. Reine Angew. Math. 434 (1993), 205-220. | Zbl 0753.11038
[006] [7] L. Childs, Taming wild extensions with Hopf algebras, Trans. Amer. Math. Soc. 304 (1987), 111-140. | Zbl 0632.12013
[007] [8] L. Childs and D. J. Moss, Hopf algebras and local Galois module theory, in: Advances in Hopf Algebras, J. Bergen and S. Montgomery (eds.), Lecture Notes in Pure and Appl. Math. 158, Dekker, Basel, 1994, 1-24. | Zbl 0826.16035
[008] [9] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Pure Appl. Math., Wiley, 1981.
[009] [10] A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford Ser. (2) 16 (1965), 193-232. | Zbl 0192.14002
[010] [11] A. Fröhlich, Galois module structure of algebraic integers, Ergeb. Math. Grenzgeb. 3, Vol. 1, Springer, 1983. | Zbl 0501.12012
[011] [12] H.-W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149. | Zbl 0098.03403
[012] [13] G. Lettl, The ring of integers of an abelian number field, ibid. 404 (1990), 162-170. | Zbl 0703.11060
[013] [14] G. Lettl, Note on the Galois module structure of quadratic extensions, Colloq. Math. 67 (1994), 15-19. | Zbl 0812.11063
[014] [15] I. Reiner, Maximal Orders, London Math. Soc. Monographs 5, Academic Press, 1975.
[015] [16] K. W. Roggenkamp and M. J. Taylor, Group rings and class groups, DMV-Sem. 18, Birkhäuser, 1992.
[016] [17] M. J. Taylor, On the Galois module structure of rings of integers of wild, abelian extensions, J. London Math. Soc. 52 (1995), 73-87. | Zbl 0857.11059