The arithmetic function counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of leads in a natural way to a certain error term which is known to be in mean-square. In this article it is proved that as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently large subset which is linearly independent over ℚ.
@article{bwmeta1.element.bwnjournal-article-aav85i2p179bwm, author = {M. K\"uhleitner and W. G. Nowak and J. Schoissengeier and T. D. Wooley}, title = {On sums of two cubes: an O+-estimate for the error term}, journal = {Acta Arithmetica}, volume = {84}, year = {1998}, pages = {179-195}, zbl = {0916.11052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav85i2p179bwm} }
M. Kühleitner; W. G. Nowak; J. Schoissengeier; T. D. Wooley. On sums of two cubes: an Ω₊-estimate for the error term. Acta Arithmetica, Tome 84 (1998) pp. 179-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav85i2p179bwm/
[000] [1] N. Bourbaki, Algebra II, Springer, Berlin, 1990. | Zbl 0719.12001
[001] [2] K. Corrádi and I. Kátai, A comment on K. S. Gangadharan's paper 'Two classical lattice point problems', Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 89-97 (in Hungarian).
[002] [3] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[003] [4] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186. | Zbl 0458.10031
[004] [5] J. L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory 15 (1982), 36-76. | Zbl 0495.10027
[005] [6] K. S. Gangadharan, Two classical lattice point problems, Proc. Cambridge Philos. Soc. 57 (1961), 699-721. | Zbl 0100.03901
[006] [7] G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283. | Zbl 45.1253.01
[007] [8] G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1-25. | Zbl 46.0260.01
[008] [9] D. R. Heath-Brown, The density of rational points on cubic surfaces, Acta Arith. 79 (1997), 17-30.
[009] [10] E. Hlawka, J. Schoißengeier and R. Taschner, Geometric and Analytic Number Theory, Springer, Berlin, 1991. | Zbl 0749.11001
[010] [11] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301. | Zbl 0820.11060
[011] [12] M. N. Huxley, Area, lattice points, and exponential sums, London. Math. Soc. Monographs (N.S.) 13, Oxford, 1996.
[012] [13] A. E. Ingham, On two classical lattice point problems, Proc. Cambridge Philos. Soc. 36 (1940), 131-138. | Zbl 0023.29802
[013] [14] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60. | Zbl 0151.04401
[014] [15] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
[015] [16] G. Kuba, On sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Univ. Hamburg 63 (1993), 87-95. | Zbl 0799.11037
[016] [17] W. G. Nowak, An Ω-estimate for the lattice rest of a convex planar domain, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 295-299. | Zbl 0582.10033
[017] [18] W. G. Nowak, On the average order of the lattice rest of a convex planar domain, Proc. Cambridge Philos. Soc. 98 (1985), 1-4. | Zbl 0552.10032
[018] [19] W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304. | Zbl 0860.11060
[019] [20] W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error term, Arch. Math. (Basel) 68 (1997), 27-35. | Zbl 0880.11066
[020] [21] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. (2) 12 (1985), 183-216. | Zbl 0575.42003
[021] [22] J. G. van der Corput, Over roosterpunkten in het plate vlak, Thesis, Groningen, 1919.